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Algorithm Selector and Prescheduler in the ICON challenge

Francois Gonard"?3, Marc Schoenauer?®!, and Michele Sebag??

! Technological Research Institute SystemX**, 8 avenue de la Vauve 91127 Palaiseau cedex France
2 INRIA
3 LRI, CNRS UMRS623 and Université Paris-Sud, Bat. 660 Claude Shannon 91405 Orsay cedex France

Abstract. Algorithm portfolios are known to offer robust performances, efficiently over-
coming the weakness of every single algorithm on some particular problem instances. Two
complementary approaches to get the best out of an algorithm portfolio is to achieve algo-
rithm selection (AS), and to define a scheduler, sequentially launching a few algorithms on
a limited computational budget each. The presented Algorithm Selector And Prescheduler
system relies on the joint optimization of a pre-scheduler and a per instance AS, selecting an
algorithm well-suited to the problem instance at hand. ASAP has been thoroughly evaluated
against the state-of-the-art during the ICON challenge for algorithm selection, receiving an
honourable mention. Its evaluation on several combinatorial optimization benchmarks ex-
poses surprisingly good results of the simple heuristics used; some extensions thereof are
presented and discussed in the paper.

1 Introduction

In quite a few domains related to combinatorial optimization, such as satisfiability, constraint
solving or operations research, it has been acknowledged for some decades that there exists no
universal algorithm, dominating all other algorithms on all problem instances. This result, referred
to as No Free Lunch theorem [20], has prompted the scientific community to design algorithm
portfolios addressing the various types of difficulties involved in the problem instances, i.e., such
that at least one algorithm in the portfolio can efficiently handle any problem instance [9,6].
Algorithm portfolios thus raise a new issue, that of selecting a priori an algorithm well suited to
the application domain [12]. This issue, referred to as Algorithm Selection (AS) and first formalized
by Rice [18], is key to the successful transfer of algorithms outside of research labs. It has been
tackled by a number of authors in the last years (more in section 2).

Algorithm selection comes in different flavors, depending on whether the goal is to yield an
optimal performance in expectation with respect to a given distribution of problem instances
(global AS), or an optimal performance on a particular problem instance (per instance AS). Note
that the measure of performance depends on the domain (e.g., time-to-solution in satisfiability, or
time to reach the optimal solution up to a given precision in optimization®). This paper focuses on
the per-instance setting, aimed at achieving peak performance on every problem instance.

In some domains, it is often the case that some problems can be solved in no time by some
algorithms. It thus makes sense to allocate a part of the computational budget to a pre-scheduler,
sequentially launching a few algorithms with a small computational budget each. The pre-scheduler
is expected to solve ”easy” instances in a first stage; in a second stage, AS is only launched on
problem instances which have not been solved in the pre-scheduler phase. Note that the pre-
scheduler enables to extract some additional information characterizing the problem at hand,
which can be used together with the initial information about the problem instance, to support
the AS phase.

This paper presents the Algorithm Selector And Prescheduler system (ASAP), aimed at algo-
rithm selection in the domain of combinatorial optimization (section 3). The main contribution
lies in the joint optimization of both a pre-scheduler and a per-instance algorithm selector. The
extensive empirical validation of ASAP is conducted on the ICON challenge on algorithm selection
[11]. This challenge leverages the Algorithm Selection library [1], aimed at the fair, comprehensive

** This research work has been funded by the French Program “Investissements d’Avenir”.
4 One often considers the joint problems of selecting an algorithm and the optimal hyper-parameters
thereof, referred to as Algorithm Configuration (AC), as the choice of the hyper-parameter values governs
the algorithm performance. AC is outside the scope of the paper and will not be further considered.
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and reproducible benchmarking of AS approaches on 13 domains ranging from satisfiability to
operations research (section 4).

The comparative empirical validation of ASAP demonstrates its good performances compara-
tively to state-of-art pre-schedulers and AS approaches (section 5), and its complementarity with
respect to the prominent Zilla algorithms [22]. The paper concludes with a discussion of the limi-
tations of the ASAP approach, and some perspectives for further research.

2 Related work

2.1 Algorithm selectors

The algorithm selection issue, aimed at selecting the algorithm best suited to the problem at hand,
was first formalized by Rice [18] as follows. Given a problem space mapping each problem instance
onto a description x thereof (usually x in ]Rd) and the set A of algorithms in the portfolio, let us
denote G(x,a) a performance model, mapping each (x, a) pair onto the performance of algorithm
a onto problem instance x. AS most naturally follows from such a performance model by selecting
for each problem instance x the algorithm a with optimal G(x, a).

A8(x) = arg max{G(x, )} (1)

The performance model is most usually built by applying machine learning approaches onto
a dataset reporting the algorithm performances on a comprehensive set of benchmark problem
instances (with the exception of [5], using a multi-armed bandit approach). Such machine learn-
ing approaches range from k-nearest neighbors [15] to ridge regression [22], random forests [23],
collaborative filtering [19, 14], or learning to rank approaches [16].

As expected, the efficiency of the machine learning approaches critically depends on the quality
of the training data: the representativity of the problem instances used to train the performance
model, and even more importantly, the description of the problem instances. Considerable care has
been devoted to the definition of descriptive features in the SAT and Constraint domains [21].

2.2 Schedulers

Besides AS, an algorithm portfolio can also take advantage of parallel computer architectures, by
launching several algorithms working independently or in cooperation on the considered problem
instance (see e.g. [24], [10]). Schedulers embed the parallel solving strategies in a sequential com-
puter architecture, by considering a sequence of x (algorithm a;, time-out 7;) pairs, where the
problem instance is successively tackled by algorithm a; with a computational budget 7;, until be-
ing solved. Notably, the famed restart strategy, launching a same algorithm with different random
seeds or different initial conditions can be viewed as a particular case of scheduling strategy [6].
Likewise, AS can be viewed as a particular case of scheduler with kK = 1 and 7 set to the overall
computational budget.

As shown by [23], schedulers and AS can be combined together along a multi-stage process,
where a scheduler solves easy instances in a first stage, and remaining instances are handled by
the AS and tackled by the selected algorithm in the next stage. [10] build per-instance schedules
where the AS is one of the component algorithms incorporated.

3 Overview of ASAP

This section first discusses the rationale for the ASAP approach, before detailing the pre-scheduler
and AS modules in ASAP.V1. Extensions thereof, forming ASAP.V2, are presented thereafter.

3.1 Analysis

A benchmark suite most generally involves easy and hard problem instances. The difficulty is that
the hardness of a problem instance depends on the considered algorithm. As shown on Fig. 1 in
the case of the SAT11-HAND dataset (section 4), while several algorithms might solve 20% of the

3 sciencesconf.org:meta2016:108942
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Fig. 1. Percentage of solved instances vs. runtime on the SAT11-HAND dataset, for 5 algorithms and the
oracle (selecting the best algorithm out of 5 for each problem instance).

problem instances within seconds, the oracle (selecting the best one out of these algorithms for
each problem instance) solves about 40% of the problem instances within seconds.

Accordingly, one might want to launch each one of these algorithms for a few seconds each on

each problem instance: after this stage, referred to as pre-scheduler stage, circa 40% of the overall
problem instances would be solved.

Definition 1 (Pre-scheduler). Let A be a set of algorithms. A k-component pre-scheduler, de-
fined as a sequence of k (algorithm a;, time-out 7;) pairs,

((ai, 7)f=y) with(a;,7;) € AXRY Viel,...,k

sequentially launches algorithm a; on any problem instance x until either a; solves X, or time T;
is reached, or a; stops without solving x. If x has been solved, the execution stops. Otherwise, j is
incremented while j < K.

Note that a pre-scheduler contributes to reduce the impact of the AS failures. An AS failure is

manifested as a problem instance x for which the AS selects an inappropriate algorithm (requiring
much computational resources to solve x or even failing to solve it), although there exists another
algorithm which could have solved x in no time. Since a pre-scheduler increases the chance for each
problem instance to be solved in no time, everything else being equal, it therefore mitigates the
chances and impact of AS failures.

After this discussion, the ASAP system involves two modules, a pre-scheduler and an AS. The

pre-scheduler is meant to solve as many problem instances as possible in a first stage, and the
AS takes care of the remaining problem instances. A primary decision concerns the division of
labor between the two modules: how to split the available runtime between the two, and how many
algorithms are involved in the pre-scheduler (parameter ). It is clear that the number of problem
instances solved by a module will increase with its computational budget, everything else being
equal; the pre-scheduler and the AS modules are interdependent. For simplicity and tractability
however, the maximal runtime allocated to the pre-scheduler is fixed to 7,3** (10% of the overall
computational budget in the experiments, section 5), and the number & of algorithms in the pre-
scheduler is set to 3. [10] and [13] use a most close setup for their fixed-split selection schedules,
except they do not constrain the AS component to take the last part of the schedule.

Given T73** and k, ASAP tackles the optimization of the pre-scheduler and the AS modules. It

is clear that both optimization problems remain inter-dependent: the AS should mostly focus on
the problem instances which are not solved by the pre-scheduler, while the pre-scheduler should
symmetrically focus on the problem instances which are most uncertain or badly identified by the
AS. Formally, this interdependence is handled as follows:

— A performance model G(x,a) is built for each algorithm over all training problem instances,
defining AS;i: (Eq. 1);

— A pre-scheduler is built to optimize the joint performance (pre-scheduler, AS;,;;) over all
training problem instances;

4 sciencesconf.org:meta2016:108942



— Another performance model G2(x,a) is built over all training problem instances, using an
additional boolean feature that indicates for each problem instance whether it was solved by
the above pre-scheduler; let AS,,s; denote the AS based on performance model G2(x, a).

ASAP finally is composed of the pre-scheduler followed by ASy,s:.

3.2 ASAP.V1 pre-scheduler

Let (a;,7;)5, denote a pre-scheduler, with overall computational budget T,s = Y. ; 7, and
let F ((a;, 7)) denote the associated domain-dependent performance. ASAP.V1 considers for

simplicity equal time-outs (a; = Tps ,i=1...k). The pre-scheduler is thus obtained by solving the

K
following optimization problem:

i, {F <(‘”’ mﬁﬂ) } @)
T’psﬁzjz?‘;”mc,al,4..0,,i K

This mixed optimization problem is tackled in a hierarchical way, determining for each value
of Tps the optimal k-uple of algorithms ay ...a,. Thanks to both small x values (x = 3 in the
experiments) and small number of algorithms (< 31 in the ICON challenge, section 4), the optimal
k-uple is determined by exhaustive search conditionally to the T}, value.

The ASAP.V1 pre-scheduler finally relies on the 1-dimensional optimization of the overall com-
putational budget T},; allocated to the pre-scheduler. In all generality, the optimization of T is
a multi-objective optimization problem, e.g. balancing the overall number of problems solved and
the overall computational budget. Multi-objective optimization commonly proceeds by determining
the so-called Pareto front, made of non-dominated solutions. In our case, the Pareto front depicts
how the performance varies with the overall computational budget, as illustrated on Fig. 2, where
the performance is set to the number of solved instances.

In multi-objective decision making [3, 2], the choice of a solution on the Pareto front is tackled
using post-optimal techniques [4], including: i) compromise programming, where one wants to find
the point the closest to an ideal target in the objective space; ii) aggregation of the objectives
into a single one, e.g., using linear combination; or iii) marginal rate of return. The last heuristics
consists of identifying the so-called "knees”, that is, the points where any small improvement on
a given criterion is obtained at the expense of a large decrease on another criterion, defining the
so-called marginal rate of return. The vanilla marginal rate of return is however sensitive to strong
local discontinuities; for instance, it would select point A in Fig. 2. Therefore, a variant taking into
account the global shape of the curve, and measuring the marginal rate of improvement w.r.t. the
extreme solutions on the Pareto front is used (e.g., selecting point K instead of point A in Fig.2).

max
0 Tp s

runtime

% unsolved instances

Fig. 2. Among a set of Pareto-optimal solutions, solution A has the best marginal rate of return; solution
K, which maximizes the average rate of return w.r.t. the extreme solutions of the Pareto front (maximizing
angle v), is the knee selected in ASAP.
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3.3 ASAP.V1 algorithm selector

As detailed in section 3.1, the AS relies on the performance model learned from the training
problem instances. Two learning algorithms are considered in this paper: random forests and
k-nearest neighbors. One hyper-parameter was adapted for each ML approach (all other hyper-
parameters being set to their default value, using the Python scikit-learn library [17]), based on a
few preliminary experiments: 35 trees are used for the RandomForest algorithm and the number
of neighbors is set to & = 3 for the k-nearest neighbors. In the latter case, the predicted value
associated to problem instance x is set to the weighted sum of the performance of its nearest
neighbors, weighted by their relative distance to x:

Sl Flax)
Floa) = = T x|

where x; ranges over the 3 nearest neighbors of x. Features were normalized (zero mean, unit
variance) before selecting the neighbors.

A main difficulty comes from the descriptive features forming the representation of problem
instances. Typically, the feature values are missing for some groups of features, for quite a few
problem instances, due to diverse causes (computation exceeded time limit, exceeded memory,
presolved the instance, crashed, other, unknown). The lack of feature value is handled by i) replacing
the missing value by the feature average value; ii) adding to the set of descriptive features 7
additional boolean features per group of initial features, indicating whether the feature group
values are available or the reason why they are missing otherwise® .

3.4 ASAP.V2

Several extensions of ASAP.V1 have been considered after the closing of the ICON challenge, aimed
at exploring a richer pre-scheduler-AS search space while preventing the risk of overfitting induced
by a larger search space.

We investigated the use of different time-outs for each algorithm in the pre-scheduler, while
keeping the set of algorithms (ay,. .., ax) and the overall computational budget T}s. The sequential
optimization strategy (section 3.2), deterministically selecting T}, as the solution with maximal
average return rate, exhaustively determining the x-uple of algorithms conditionally to T}, is thus
extended to optimize the (71,...74_1) vector conditionally to Z;:ll < Tps, using a prominent
continuous black-box optimizer, specifically the Covariance-Matrix Adaptation-Evolution Strategy
(CMA-ES) [7].

This extended search space is first investigated by considering the raw optimization criterion
Fraw ((ai,7:)F_;) defined in section 3.2, that is, the cumulative performance of ASAP over all
training problem instances. However a richer search space entails some risk of overfitting, where
the higher performance on data used to optimize ASAP (training data) is obtained at the expense
of a lower performance on test data. Generally speaking, the datasets used to train an AS are small
ones.

A penalized optimization criterion is thus considered:

Fra((ai, 7)i=1) = F ((ais 7:)i=q) + “’i_il <Ti - 7}:)2

which penalizes the Lo distance between the (7;) vector and the uniform time outs (7; = %)
The rationale for this penalization is to prevent brittle improvements on the training set due to
opportunistic adjustments of the 7;s, at the expense of stable performances on further instances.
The penalization weight w is adjusted using a nested CV process.

A randomized optimization criterion is also considered. By construction, the fitness func-
tion aggregates the performances of all training problem instances. As the training problem in-

stances sample the problem domain, this fitness defines a noisy optimization problem. Sophisticated

5 The increase in the overall number of features is handled by an embedded feature selection mechanism,
removing all features with negligible importance criterion (< 1075 in the experiments) in a separately
learned 10-trees random forest regression model.
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approaches have been proposed to address this noisy optimization issue in non-convex optimization-
based machine learning settings (see e.g. [8]). Another approach is proposed here, based on the
bootstrap principle: in each CMA-ES generation, the set of n problem instances used to compute
the performance is uniformly drawn with replacement from the n-size training set. In this man-
ner, each optimization generation considers a slightly different optimization objective noted F,qnd,
thereby discarding the insignificant improvements.

Finally, a probabilistic optimization criterion is considered, handling the ASAP perfor-
mance on a single problem instance as a random variable with a triangle-shape distribution (Fig.
3) centered on the actual performance p(x), with support in [p(x) — 6, p(x) + 6], and taking the
expectation thereof. The merit of this triangular probability distribution function is to allow for
an analytical computation of the overall fitness expectation, noted Fgsp.

' Als.1 Alg:2 o Alg.1 Alg.2
—'8 IS : 1 23 .
< & 1 |8 n
Ny > g N
= ! foli=
Z's 1 =) [
£= 2= [
BP ! 2 w0
s 2 ' 2 ro
Q"; 1 Q> - 1 1
runtime runtime
- stepl YT stepl
= = m == mmmm=m =~ - step2

Fig. 3. Schedule execution difference between punctual and triangular pdf. On the left (punctual pdf),
schedule stops during step 1. On the right (triangular pdf, part of the instance is not solved during step 1
and the schedule executes until step 2 solves the rest.

4 Experimental setting: The ICON challenge

4.1 ASlib data format

Due to the difficulty of comparing the many algorithm selection systems and the high entry ticket
to the AS field, a joint effort was undertaken to build the Algorithm Selection Library (ASlib),
providing comprehensive resources to facilitate the design, sharing and comparison of AS systems
[1]. ASlib (version 1.0.1) involves 13 datasets, also called scenarios (Table 1), gathered from recent
challenges and surveys in the operations research, artificial intelligence and optimization fields.
The interested reader is referred to [1] for a more comprehensive presentation.

Table 1. ASlib datasets (V1.0.1)

dataset # instances # algorithms # features
ASP-POTASSCO 1294 11 138
CSP-2010 2024 2 86
MAXSAT12-PMS 876 6 37
PREMARSHALLING-ASTAR-2013 527 4 16
PROTEUS-2014 4021 22 198
QBF-2011 1368 5 46
SAT11-HAND 296 15 115
SAT11-INDU 300 18 115
SAT11-RAND 600 9 115
SAT12-ALL 1614 31 115
SAT12-HAND 767 31 115
SAT12-INDU 1167 31 115
SAT12-RAND 1362 31 115

sciencesconf.org:meta2016:108942



Each dataset includes i) the performance and computation status of each algorithm on each
problem instance; ii) the description of each problem instance, as a vector of the expert-designed
feature values (as said, this description considerably facilitates the comparison of the AS systems);
iil) the computational status of each such feature (e.g. indicating whether the feature could be
computed, or if it failed due to insufficient computational or memory resources). Last but not
least, each dataset is equi-partitioned into 10 subsets, to enforce the reproducibility of the 10 fold
CV assessment of every AS algorithm.

4.2 The ICON Challenge on Algorithm Selection

The ICON Challenge on Algorithm Selection, within the ASlib framework, was carried on between
February and July 2015 to evaluate AS systems in a fair, comprehensive and reproducible manner®.
Each submitted system was assessed on the 13 ASlib datasets [1] with respect to three measures: i)
number of problem instances solved; ii) extra runtime compared with the virtual best solver (VBS,
also called oracle); and iii) Penalized Average Time-10 (PAR10) which is the cumulative runtime
needed to solve all problem instances (set to ten times the overall computational budget whenever
the problem instance is unsolved).

As the whole datasets were available to the community from the start, the evaluation was
based on hidden splits between training and test set. Each submitted system provides a dataset-
dependent, instance-dependent schedule of algorithms, optionally preceded by a dataset-dependent
presolver (single algorithm running on all instances during a given runtime before the per-instance
schedule runs). Each system can also, in a dataset-dependent manner, specify the groups of features
to be used (in order to save the time needed to compute useless features).

Two baselines are considered: the oracle, selecting the best algorithm for each problem instance;
and the single best (SB) algorithm, with best average performance over all problem instances in
the dataset. The baselines are used to normalize every system performance over all datasets,
associating performance 0 to the oracle (respectively performance 1 to the single best), supporting
the aggregation of the system results over all datasets.

5 Experimental validation

5.1 Comparative results

Table 2 reports the results of all submitted systems on all datasets (the statistical significance tests
are reported in Fig. 5). The general trend is that zilla algorithms dominate all other algorithms
on the SAT datasets, as expected since they have consistently dominated the SAT contests in the
last decade. On non-SAT problems however, zilla algorithms are dominated by ASAP_RF.V1.

The robustness of the ASAP approach is demonstrated as they never rank last; they how-
ever perform slightly worse than the single best on some datasets. The rescaled performances
of ASAP RF.V1 is compared to zilla and autofolio (Fig. 4, on the left), demonstrating that
ASAP_RF.V1 offers a balanced performance, significantly lower than for zilla and autofolio on
the SAT problems, but significantly higher on the other datasets; in this respect it can be viewed
as a low-risk system.

5.2 Sensitivity analysis

The sensitivity analysis conducted after the closing of the challenge compares ASAP.V2 (with
different time-outs in the pre-scheduler) and ASAP.V1, and examines the impact of the different
optimization criteria, aimed at avoiding overfitting: the raw fitness, the L2-penalized fitness, the
randomized fitness and the probabilistic fitness (section 3.4).

The impact of the hyper-parameters used in the AS (number of trees set to 35, 100, 200, 300
and 500 trees in the Random Forest) is also investigated.

Table 3 summarizes the experimental results that each ASAP.V2 configuration would have ob-
tained in the ICON challenge framework, together with the actual submissions results, including

5 The codes of all submitted systems and the results are publicly available, http://challenge.icon-
fet.eu/challengeas
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Table 2. Normalized performances of submitted systems, aggregated across all folds and all measures (the
lower, the better). Ranks of zilla (challenge winner) and ASAP_RF.V1 (honourable mention) are given in
parenthesis. Numbers were computed from the challenge outputs.
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ASP-POTASSCO 0.294 (2) 0.359 0.299 0.314 0.37 0.336 0.319 (5) 0.283
CSP-2010 0.146 (1) 0.247 0.288 0.223 0.263 0.406 0.2 (3) 0.157
MAXSAT12-PMS 0.168 (4) 0.159 0.45 0.149 0.166 0.224 0.201 (5) 0.233
PREMARSHALLING-ASTAR-2013  0.349 (4) 0.369 0.359 0.307 0.325 0.296 0.374 (7) 0.385
PROTEUS-2014 0.16 (4) 0.177 0.222 0.056 0.134 0.103 0.245 (8) 0.223
QBF-2011 0.097 (2) 0.091 0.169 0.096 0.142 0.162 0.191 (v) 0.194
SAT11-HAND 0.341 (4) 0.318 0.342 0.342 0.466 0.464 0.328 (3) 0.302
SAT11-INDU 1.036 (5) 0.957 0.875 1.144 1.13 1.236 0.905 (2) 0.966
SAT11-RAND 0.104 (6) 0.09 0.046 0.226 0.116 0.088 0.053 (2) 0.067
SAT12-ALL 0.392 (5) 0.383 0.306 0.502 0.509 0.532 0.273 (1) 0.322
SAT12-HAND 0.334 (5) 0.31 0.256 0.434 0.45 0.467 0.272 (2) 0.296
SAT12-INDU 0.955 (6) 0.919 0.604 0.884 1.074 1.018 0.618 (3) 0.594
SAT12-RAND 1.032 (5) 1.122 0.862 1.073 1.126 0.97 0.779 (1) 0.79

PREMARSHALLING-ASTAR-2013
PROTEUS-2014
MAXSAT12-PMS

QBF-2011

B
‘s, CSP-2010
SAT11-HAND

ASP-POTASSCO

’
SAT12-RAND

SAT12-ALL SAT12-INDU

SAT12-HAND

Fig. 4. On the left: per-dataset performances of ASAP_RF.V1 (balls, dotted line), zilla (no marker, dashed
line) and autofolio (triangles, solid line) scaled to the range of performance of all submitted systems. As
a comparison, the per-dataset best submitted system (small balls, solid line) and ASAP_RF scores before
rescaling are depicted on the right.

systems that were not competing in the challenge: llama-regr and llama-regrPairs from the orga-
nizers, and autofolio-48 which is identical to autofolio but with 48h time for training (12h was the
time limit authorized in the challenge) [11].

The significance analysis, using a Wilcoxon signed-rank test, is reported in Fig. 5. A first result
is that all ASAP.V2 variants improve on ASAP.V1 with significance level 1%. A second result is
that ASAP.V2 with the probabilistic optimization criterion is not statistically significantly different
from zilla, autofolio and zillafolio.

A third and most surprising result is that the difference between the challenge-winner zilla and
most of ASAP.V2 variants is not statistically significant.

8 As the CSP-2010 dataset gives the choice between only two algorithms, the pre-scheduler consists of a
single algorithm running for the whole time devoted to the pre-scheduler. For that particular case, all
ASAP_RF.V2 variants with the same selector hyperparameter are identical.
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Table 3. Optimized pre-scheduler performances®aggregated across all datasets, all splits and all measures
(the lower, the better). The hyperparameters for f;2 and fqr, were chosen after preliminary experiments
using the cross validation provided with ASlib. For each configuration of the selector, the best-evaluated
fitness function appears in bold

fitness function (if relevant)  fr2 farp  frand  fraw || none
ASAP_RF.V2 35 0.416 0.414 0.412 0.410| 0.414
ASAP_RF.V2 100 0.404 0.398 0.405 0.402 || 0.414
ASAP_RF.V2 200 0.404 0.402 0.402 0.399 || 0.405
ASAP_RF.V2 300 0.399 0.399 0.402 0.393 || 0.405
ASAP_RF.V2 500 0.398 0.394 0.398 0.398 || 0.401
ASAP_RF.V1 0.416
ASAP kNN.V1 0.423
autofolio 0.391 .
fAexfolio 0.442 equivalent to the
means over the
sunny 0.482
sunny-presoly 0.485 columns of table 2
zilla 0.366
zillafolio 0.37
autofolio-48 0.375
llama-regrPairs 0.395
llama-regr 0.425
1.00
ASAP_RF.V2 500 f,:
ASAP_RF.V2 500 ,, 0.10
ASAP_RF.V2 500 f,,.,
ASAP_RF.V2 500 f,,, 0.01
ASAP_RF.V2 500 none | |
©582g38c88g8:8388:f8nRr88g8g 3i°t
TEE ey g ST Lol Ko TS Sy ’
$59325353339322383%3%3¢%3¢
222322383223 237°<25822323

Fig.5. Wilcoxon signed-rank test p-value between ASAP.V2 variants with 500 trees and every other
systems including the single best algorithm (SB) and the virtual best solver (VBS). In particular, the
different fitness functions do not differ significantly from each other in most cases.

Fig. 6 details per dataset the performance improvement between ASAP.V2 (500 trees, fr-
version) and ASAP.V2 (500 trees, fg, version) and on the other hand ASAP.V1_RF (35 trees).
Note that ASAP.V2 outperforms the per-dataset best submission to the challenge for 3 datasets.

Fig. 6. Per-dataset performances of ASAP RF.V2 with 500 trees, optimized using fr2 (on the left with
triangles) and using f4rp (on the right with squares) scaled to the range of performance of the challenge
submitted systems. As a comparison, ASAP_RF.V1 appears with the balls and dashed line.
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6 Discussion

A new hybrid algorithm selection approach, the ASAP system was presented in this paper, combin-
ing a pre-scheduler and a per-instance algorithm selector. ASAP.V1 introduced a selector learned
conditionally to a predetermined schedule so that it focuses on instances that were not solved by
the pre-scheduler . ASAP.V2 completes the loop as it re-adapts the schedule to the new AS. The
main message is that the scheduler and the AS must be optimized jointly to reflect the division of
labor achieved by these two components

ASAP.V1, thoroughly evaluated in the ICON challenge on algorithm selection (ranked 4th)
received an honourable mention, due to its novelty and good performance comparatively to the
famed and long-known Zilla algorithms.

The ASAP.V2 extension achieved significantly better results along the same challenge setting.
It must be emphasized that these results must be comforted by additional experiments on fresh
data. A main lesson learned is the importance of the regularization, as the amount of available data
does not permit to consider richer AS search spaces without incurring a high risk of overfitting. The
probabilistic performance criterion successfully contributed to a more stable optimization problem.
Further research work will be devoted to extending this criterion.
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Abstract

This article describes the ongoing work dealing with the prediction and estimation of vapor-liquid
thermodynamic properties using global optimization algorithms. For the present case, phase
equilibrium parameters for the system of supercritical CO, (sCO) and some essential oils, were
estimated using the corrected version of van der Waals and Wong-Sandler mixing rules, the Peng-
Robinson state equation and the more common thermodynamic models for non-linear parameter
estimation in equilibrium modeling, namely, Van Laar, NRTL and UNIQUAC. We proposed a
variant of the traditional harmony search algorithm, i.e. self-regulated harmony search (SFHS), which
was used in this task. Here, we include preliminary simulation results for the system, sCO2: a-pineno
using the Wong-Sandler rule and the van Laar model. Results show a good agreement between the
experimental results reported in the literature, and the models predictions using the SFHS algorithm.
Furthermore, SFHS seems to be a promising algorithm for processing phase equilibrium data.

Keywords: Optimization, Harmony search, property estimation.

1. Introduction

Supercritical fluid extraction (SFE) is now one of the well-known green technologies. Some
industries are currently using it instead of traditional undesirable solvents. SFE advantages include
high extraction rates, high selectivity and efficiency, as well as, solvent recycling. SFE uses the so
called green solvents, such as water, and carbon dioxide. This last supercritical no polar fluid is
currently used on a large scale in several areas, for example for coffee beans decaffeination, biodiesel
production, chemical reactions, cholesterol extraction from butter, and essential oils production, [1]-
[3]. Nevertheless, these processes need to be optimized because of their high operative cost and the
requirement for high selectivity in the presence of several other components, and the extraction in the
shortest time. Obviously, the optimum will depend on the purpose of the extraction. Among the
factors needed to be optimized, are the thermodynamic parameters that control phase equilibrium.
The vital information for designing extractors are the data equilibrium between liquid and
supercritical gas, besides reliable data on mass transfer and hydrodynamics. Although there are
limited alternatives for modelling the vapor-liquid equilibrium in a SFE process, the use of empirical
equations of state is probably the most common approach. The Peng-Robinson state equation which
is cubic in the volume is a clear example, as is illustrated next. This state equation is extensively used
for thermodynamic properties calculations, and is given by,
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Because the SFE thermodynamic system is a mixture, we require the use of a mixing rule. In this case we
selected the Wong-Sandler mixing rule, along with the Van Laar model for calculating the activity coefficient,
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Now, for the formulation of the required objective function, we can apply either the ordinary least squares
method (OLS) or the maximum likelihood criterion. The former strategy was used in this in-progress work.
With the help of the above equation, the objective function (OF) was structured as,

N
OF = Z[Pf"” - Pf"‘]2
i

where N is the number of experimental data, is the experimental value, and the corresponding pressure at the
bubble point evaluated using the Peng-Robinson equation. For the simulation results presented below, the
adjustable parameters were (a,; a,q; k12)-

A. The SFHS algorithm

The Harmony Search (HS) algorithm was proposed a little bit over a decade ago in [4]. Throughout
its existence different variants have appeared trying to improve multiple components of the strategy.
A recently proposed modification was presented last year in [5]. This algorithm is similar to the
original HS approach, and it was inspired on the success of the ABHS variants [6]. The authors
propose a variation of the Fretwidth (FW(j)) on each iteration, based on the following scenarios: (1)
Start with a fixed value, FWini, (2) If the best solution in HM is improved, look for good values
around the current FW and, (3) After FWsat non-successful iterations, switch to an exponential decay.
The first case requires no further comments. The third one is quite close to the one proposed in ABHS,
S0 an in-depth explanation can be found in [5]. The remaining case (i.e. scenario two) is the core of
our proposal and it is ruled by eq. (3). Here, a random number uniformly distributed between zero
and one () is multiplied by a constant (), to stochastically adjust the Fretwidth (FW(j)) around the

13 sciencesconf.org:meta2016:109858



value that leads to improving the solution (). The constant, , is included as a way of controlling the
level of adjustment, and it was set to one for the current work. Moreover, represents the midpoint for
random generation of new fretwidths. This stochastic behavior is maintained until the third scenario
is repeated. The logic of the current proposal is summarized in Fig. 1.

For this algorithm, the Harmony Memory Size (HMS) indicates how many solutions are stored and
considered during the execution of the algorithm. The Harmony Memory Considering Rate (HMCR)
and Pitch Adjusting Rate (PAR) are values that must be located between zero and one, since they
relate to the probability of selecting a given path in our proposed algorithm. Based on previously
reported recommendations we defined FWini=0.5, FWmax=2.0, FWmin=, FWSsat=1000, and
SatHS=10000. The remaining parameters, i.e. HMS, PAR, and HMCR, were defined for each
simulation, [5,6].

Aj = FW(j)
SatCt=0
Decay=0
DC=0

A 4

y
[ Fw() ¢ €q.3) ] (Fwi) < Ea. (2) )

Fig 1. Logic of the SFHS variant, where DC is the decay counter, j is the current iteration, SatCt is the saturation counter, and FW_sat
is the saturation limit, [5].

The overall logic of our proposed algorithm is described in the following pseudocode:

1) Define the execution parameters: memory size (HMS), memory considering rate (HMCR),
pitch adjusting rate (PAR), initial Fretwidth (FWjy;), maximum Fretwidth (FWy,.y),
amplitude constant (Cgyy), and saturation limit (FWg,,). Also, define the saturation criterion
to be used as a last resource for stopping the algorithm in case it does not converge after a
given number of iterations (Satys).

2) Generate a random initial matrix, HM, of size HMS x N, where N represents the number of
dimensions.

3) Generate a random number. If it is lower than HMCR, go to step 4. Otherwise, take a random
value from the search domain and go to step 6.
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4) Pick the value located at a random row of HM, and at the column corresponding to the
component which is being updated.

5) Generate a random number. If it is lower than PAR, adjust the pitch.

6) Repeat steps 3 to 5 for the remaining dimensions.

7) Evaluate the new candidate solution. If it is better than the worst solution stored in HM,
replace it, discard the worst, and go to step 8. Otherwise, go to step 10.

8) Store the current Fretwidth, FW(j), into A;. Also, reset the saturation counter (SatCt), the
decay flag (Decay), and the decay counter (DC).

9) Update the Fretwidth and go to step 13.

10) Check if Decay=0. If so, increase the saturation counter,SatCt, and go to step 11. Otherwise,
increase the decay counter, DC, and go to step 12.

11) Check if the saturation counter is smaller than the saturation limit, i.e. SatCt < FWgg;. If so,
go to step 9. Otherwise, switch the decay flag to one, reset the decay counter (DC), and go to
step 12.

12) Update the Fretwidth, and go to step 13.

13) Repeat for NI iterations.

14) Report results and end the process.

2. Methodology

The first part of this work was dedicated to verify the correctness of the SFHS algorithm. Later and
after using it for calculating the optimum value for some benchmark functions, we ran simulations
for the prediction of the thermodynamic parameters of the selected system sCO2:a-pineno. In order
to generate the vapor-liquid equilibrium data, we use the state equation and the fugacity coefficients
values for the binary mixture. Besides, the fundamental principle of equality of the fugacity
coefficients (isofugacity condition) for a component present in both phases was used. Finally, we
compiled for comparison purpose, the experimental data reported in [7]. Table I includes the critical
properties of the two components of the mixture (sCO2: a-pineno).

Table I.
Critical properties of the mixture components, [7]

Tc[K] Pc[MPa] Vc[cm®/mole]  Acentric

factor
CO; 304.200 7.375 94.000 0.239
a-pineno  630.000 2.890 484.500 0.313

3. Results

The parameters for the SFHS algorithm were: FWini = 0.5, FWmax = 2.0, FWmin =, FWSsat =
1000, and SatHS = 10000. Similarly, HMS = 5.0, PAR= 0.5, HMCR = 0.9. Fig. 2 shows an example
of the variation of the iterations number, as well as of the convergence time, for the shifted Jong
function when using SFHS with the above parameters.
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Fig.2. The iterations number and convergence time for the shifted Jong function.

As observed, the convergence time is highly dependent of the number of unknown parameters, but
this is not the case for the iterations number. Some of the parameters for the SFHS algorithm used for
most of the simulations were: FWMin = ; FWMax = 2.0; FWIni = 0.5; FWsat = 1000; SatHS=1e4;
CBW = 1.0; 6<; PAR=0.8; HMCR=0.9; HMS=0.5. The maximum number of iterations was one
million. We repeated each of the simulations 30 times. A slight variation of the results was detected.
We believe that one of the possible reasons for this behavior, is the apparent random nature of the
optimization algorithm, as well as the error propagation. Table Il includes the values of the interaction
parameters.

TABLE II.

Averaged values for the interaction parameters

T, [K] al2 a2l k12

313.15 1.2139 0.9580 0.7587
323.15 1.6946 0.7911 0.9841
328.15 0.9864 0.9189 0.7751

Fig. 3 shows the vapor (supercritical phase)-liquid equilibrium, for three temperatures. In it, the
model prediction for the experimental values P-(x;y) was adjusted. The Peng-Robinson estate
equation along with the Wong-Sandler mixing rule and the van Laar model, seems to be a useful path
for modeling the vapor-liquid equilibrium at high pressures above critical conditions. However, this
type of equation of state which includes mixing rules for supercritical fluid mixtures, becomes very
sensitive to the value of the interaction parameters. Keep in mind, that there is some theoretical basis
to the cubic equations of state, but this is does not hold for such adjustable parameters.
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Fig 3. V-L equilibrium at three temperatures

In order to know the molar volume of the liquid phase for the mixture, we recalculated it using the
Peng-Robinson state equation along with the parameters found by simulation. Figure 4 shows the
expected tendency for the volume variation, as a function of the pressure and temperature increment.

17 sciencesconf.org:meta2016:109858



1300 -

1200 J
1100 4
€ 1000 4
9 O T=312.15(K) AQQMA%
S 900 4 —&— Predicted
= & T=323.15[K)
a00 — & — Predicted
O T=328.15[K)] A
700 _ —&— Predicted
600
500 .
15
10 1
5 0.6 08
P[Mpa] Nary 0.4 «

Fig 4. Liquid molar volume variation

4. CONCLUSIONS

We contrasted simulation results with previous experimental work reported in the literature for the
system sCO2: a-pineno and we found a good agreement. Nevertheless, we observed a small variation
of the interaction parameters values with reasonable and acceptable accuracy. Further work is needed
for improving the simulation methodology (including new thermodynamic models, and the
minimization of the Gibbs free energy), and on the development of approaches to enhance the
reliability and reproducibility of this new variant SFHS, and other algorithms.

Nomenclature:

P = pressure in atm

v = molar volume in liters/g-mol

T = temperature in K

R = gas constant (0.08206 atm-liters/g-mol K)
Tc = critical temperature in K

Pc = critical pressure in atm

y = activity coefficient

o = acentric factor
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1 Introduction

One of the most significant issue in manufacturing systems is production scheduling. Better schedul-
ing system has significant impact on cost reduction, increased productivity, customer satisfaction
and overall competitive advantage. The vast majority of scheduling research are based on the com-
mon assumption that the machines are available all the time. However, this assumption may not
be true in real industry. In order to increase the productivity, machines on production lines should
be maintained periodically in order to minimize the makespan. In this paper, we study a two-
machine flow shop scheduling problem where machines must be maintained periodically. Although
this problem has largely been addressed in the past, the periodic maintenance issue has not been
taken sufficiently into account. In the flow-shop scheduling literature, there is a major job feature
which is the preemption. In our work, we assume that preemption is not allowed. Liao et al. [3]
introduced a new notion which is the unavailability constraint due to preventive maintenance after
a fixed number of jobs. They provided a Mixed Integer Programming (MIP) model, two heuristics
and also a Branch and Bound method for analyzing heuristic’s performance. Nouri et al. [1] dealt
with a non-permutation two-machine flow-shop with learning effect and availability constraints.
They propose a MIP and an effective improving heuristic. Hnaien et al. [2] were interested by with
the same problem but under the unavailability constraints considered only on one machine. They
investigated two mixed-integer programming (MIP) models for this problem. Then they proposed
a branch and bound algorithm based on a set of new lower bounds and heuristics.

2 MIP formulation

We consider a set of n jobs N = {1,2,..,n} to be executed on two machines represented by a
set K = {1,2}. First, we mention that each machine can perform only one job at time. Each job
must follow the same route. It should be executed on the first machine then on the second one.
Furthermore, we assume that the machines are subject to periodic maintenance of period T'. Our
approach consists on splitting the scheduling horizon into batches. Each one is defined as the period
between two successive maintenance tasks. We mention that 7" represents also the length of each
batch. Hereafter, we present the notation used to formulate our problem:

n  number of jobs

k  machine index, k= 1,2

i jobindex,i=1,..,n

P;i processing time of job ¢ on machine k
T availability period

d duration of maintenance task

[ batch index

M big integer value
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The variables Cyqz, Cik represent, respectively, the makespan and the completion time of job ¢
on the machine k.

S 1 if job ¢ precedes job j on machine k,
4k =7 0 otherwise.

b — 1 if job ¢ belongs to bach [ on machine k,
=7 0 otherwise.

| 1if batch ! is used on machine k,
Uk =1 0 otherwise.

min Cran (1)
s.c. Cip > Py, V(i,k) € N x K; (2)
Cit, > Py + Cji, — My V(i) € N*i # j,k € K; (3)
Cjk > Pjp + Cip — M(1 — 1) V(i,5) € N?,i # j,k € K; (4)
Cmax Z Ci2 VZ S N; (5)
Cio— P > Cy YieN; (6)
> bur=1 Y(i,k) € N x K; (7)
=1
ZPikbilk <Tzy V(LK) € LxK; (8)
i=1
Cir. — Py, > (l*l)(T+d)bilk V(Z,l,k}) e NXxXLxK; (9)
Cir, < (IT+ (I = V)d)bjp + (1 — byr)M  V(i,l,k) € N x L x K; 10)

(
Cir, >0 V(i k) € N x K; (
x;; €{0,1} V(i,j) € N% (12)
bur € {0,1} V(i,l,k) € N x L x K; (
ZlkE{O,l} V(l,k’)ELXK; (

The objective function (1) is to minimize makespan. Constraints (2) guarantee that completion
times of the jobs must be higher than or equal to their corresponding processing times. Constraints
(3)-(4) avoid the overlap of jobs. Constraints (5) specify that the makespan is equal to the comple-
tion time of the last job executed on machine 2. Constraints (6) guarantee that the first operation
of a job should be executed on the first machine completely before its executing on the second
machine. Constraints (7) assure that a job must be included in exactly one batch. This latter could
be different for each machine. Constraints (8) assume that processing times of jobs in a batch do
not exceed its length T'. Constraints (9)-(10) define the starting and completion times for each job
included in a batch. The completion time was defined as non-negative variables by constraint (11)
and also constraints (12)-(13)-(14)set up the binary variables @;jx,bik, 21k

We obtain a MIP model for a permutation scheduling by adding the following constraints :

Tij1 = Tij2 V(’L,]) € N?

2.1 Lower bound

We present a lower bound for the problem based on Hnaien et al. [2]:

LB=Y Py+ LL‘—% :

i=1

— 1) d+ max {Pp}. (15)

3 Variable Neighborhood Search

Variable Neighborhood Search is a single-solution based meta-heuristic for solving optimization
problems proposed by Mladenovic and Hansen [4]. The principal idea is to explore successfully a
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set of different neighborhood in order to provide a better solution by moving from one neighborhood
to another. The changes of neighborhood are used to escape from local optimum. We use three
procedure to generate an initial solution: randomly, by applying SPT and LPT rules. The solution
of a permutation schedule is represented by a sequence of jobs. With this representation, we can
use three neighborhood structure presented as follows:

— Interchange N;: an interchange neighbor is defined by exchanging two job positions.
— Swap Nj: a swap neighbor is defined by exchanging two successive job positions.
— Reverse Nj: a reverse neighbor is defined by reversing jobs order between two different positions.

The shaking procedure can be easily implemented using random moves from a given neighborhood
and we mention also that we use a best improvement local search. The stopping criteria was fixed
at 100 iterations.

4 Computational results

In order to assess the performance of the two approaches, several experiments were performed
on 15 randomly generated instances for each n. The processing time were generated randomly in
[1,100], the length of batches was T' = 100 and the maintenance duration was d = 1. We used
CPLEX 12.6 solver and the proposed VNS algorithm was coded in the C language. All instances
were solved on an Intel Core i5 2.7 GHz and 8 Go of RAM.

Table 1 represents the results of the MIP. It is able to solve optimally instances of size up to 35 jobs.

Table 1. MIP average results Table 2. VNS average results
Jobs Cpx_Opt CPU_Time Jobs Gap_Cpx(%) Gap-VNS(%) CPU_time
10 488 2 10 0 0.04 3600
15 950 15 20 0 0.06 3600
20 968 386 30 0 0.79 3600
25 1781 633 50 12.46 2.92 3600
30 2035 1699 100 20.78 10.34 3600
35 2448 1200 500 27.51 12.34 3600

Table 4 provides the results of VNS. We define the gap as follows: for n > 30 : Gap_VNS= Best-VNS—LB

LB
. __ Best. VNS—CPX_Opt
Otherwise Gap_VNS= CPX Opt

5 Conclusion

In this work, we investigate a two machine flow-shop scheduling problem with a preventive main-
tenance. We propose a MIP formulation to solve optimally this problem for small instances and
we present an efficient and effective VNS designed to solve the big instances.
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1 Introduction

The internationalisation of financial markets has significantly expanded investment opportunities
and risk. No doubt the probability of default (PD) is one of the key input factors of credit risk modelling and
measuring. Estimating each borrower’s risk level by assigning a different PD is now widely done by many
banks (especially since 2008, when most of the world began to experience a period of financial and
economic turmoil). The PD has many methodologies for its estimation, but this paper will be devoted to the
structural approach, which was proposed in 1974 by Robert Merton [7] in his seminal paper on the valuation
of corporate debt, where he introduced a model for assessing a credit risk of a company by characterizing a
company’s equity as a call option on its assets. It was natural to use the Black-Scholes [1] option pricing
framework from 1973 for estimation the price of this option. The vast majority of previously-proposed
empirical studies based on structural models were devoted to the nonfinancial institutions, mainly because
financial institution defaults occur relatively scarcely. Nevertheless, the recent global financial crisis has
clearly demonstrated the necessity for the correct determination of the probability of default also for
financial institution. For this reason, the proposed paper is aimed to determine the probability of default of
financial institutions, particularly US commercial banks.

Generally, the Merton model is built on the number of simplifying assumptions. Notwithstanding,
one of the most important drawbacks is an assumption that company assets follow the log-normal
distribution (the natural logarithm of returns on the company value is distributed normally). But it is well
known that log-return of equities are not normal distributed. As a matter of fact, several empirical
investigations have shown that log-return of equities present skew distributions with excess kurtosis which
leads to a greater density in the tails and the normal distribution (se e.g. Fama [3, 4, and 5] or Rachev and
Mittnik [8]. From this reason, there is presently a trend of analysing and simulating the time series of
particular variables using Lévy processes (see e.g. Cont and Tankov [2], Schoutens [9 and 10] or Tichy
[11]), because these series can fit also the higher moments of the probability distributions. This could be
crucial moment within correct estimation of PD, especially for financial institution.

In this research the possibility of using the structural model based on Merton's framework within
determination of US commercial banks' probability of default is verified. First, the classical assumptions of
Merton's model are applied, particularly the assumption of normal distributions of assets' market value.
Secondly, a structural credit risk model based on the Variance Gamma (VG) process is implemented in order
to overcome some drawbacks of the Merton model, thus particularly the assumption of normal distribution.
Finally, an empirical comparison between the results obtained from Merton model with classical
assumptions and models with subordinated Lévy processes are proposed.

Our empirical analysis so far suggests, that normality assumption can lead to the serious mistakes in
the pricing of the risk and that the probability of default is generally underestimated by the classical Merton

! The working paper is based on research activities sponsored through GACR Project No. P403/14-15175P and ESF
Project No. CZ.1.07/2.3.00/20.0296. The support is greatly acknowledged.
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model. These first results will be further discussed and compared with other selected models. Neural
networks and genetic algorithms will be used at the following analysis, since the empirical analysis suggest
an interesting possibility of using these models to estimate the probability of default.

2 Methodology

The core concept of the Merton model [7] is very well known and was introduced in 1974 to treat
company’s equity and debt as a contingent claim written on company’s assets value. Using classical
geometric Brownian motion and in accordance the Black-Scholes option pricing theory [1] we get PD
estimation as follows:

TR

PD=P[A <L]=[ e (Tt #(x)dx (1)

where 4 is the expected return (drift coefficient), o is the volatility (diffusion coefficient), both
unobserved, A, is the company’s asset value at time t, L is face value of debt at time T and ¢ is the
probability density function of a standard normal variable.

Using subordinated processes we are usually able to capture empirically observed anomalies which are
presented in the evolution of return processes over time. That is, we substitute the physical time with a so-
called intrinsic (operational) time which provides distribution tail effects often observed in the market (see
Rachev and Mittnik [8] or Schoutens [9]). Thus, if W={W/(t), t >0} is a stochastic process (we will suppose

that W is a standard Brownian motion) and T={T(t),t>0} is a non-negative stochastic process, a new
process Z={Z(t)=W(T(t)), t >0} may be formed and it is defined as subordinated to W by the intrinsic
time process T . Thus, we model the company’s assets value process A, by a stochastic equation:

At At Jorp [ ks + [ pls)dT(s)+ [ o(s)aw(T(6), ®

where the drift in the physical time scale ,u(S), the drift in the intrinsic time scale p(s) and the volatility
O'(S) are generally assumed to be constant. Following the same notation as in the Merton’s framework, the

value of a European call option at time t (the value of company’s equity) with exercise price L (face value
of a zero-coupon debt instrument) and time to maturity t?2 is given by

E = A(tO)F{In [f(—t")n — Loyt F[ln [ﬁn : @)

1
F.(x)=[" o] —2—|dr,(y), (4)

where

®() is the cumulative distribution function of the standard normal variable, F, s
the cumulative distribution function of a random variable Y =j;02(s)dT (s) andL,, =Lexp(— J:) r(s)ds) is

the discounted exercise price (time-dependent function r(t) defines the short term interest rate). Considering
a continuous distribution of the random variable Y with density function f, then F.(x) can now be

2 Here we change the notation of maturity time from T (used in the Merton’s framework) to t since T denotes the
intrinsic time process in the subordinated option pricing models.
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numerically integrated over the finite interval [0,1] the transformation y=u(l-u)™® (see Rachev and

Mittnik [8]), i.e.:

e xi%ﬁy o) X xi%}tu(l—u)g’

F.\X)=| & —— |f,(y)dy=| D u)” ——-
I ! u-u)?® (L-u)*

0 \/Ty

Analogously to the Merton model (using delta Greeks for monitoring of the variation in the derivative
price with respect to the parameters that enter into the option formula) the probability of default can be
finally estimated under the risk neutral probability measure as follows:

I{Lr,to,t) 1
nj—2% [+>y
PD, =F [| (Lr,to,tJ] = Alt,)) 2
t— '+ n

Alto)

=), @ dFy (y). (5)
Io \/y
Gurny, Ortobelli and Giacometti [6] used this approach for PD estimation of chosen non-financial
companies. They worked with Stable Lévy model represented by Mandelbrot-Taylor distribution and they
also suggested alternative parameter estimation for subordinated processes. In this research, described
approach is used for the subordinated VG process.
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1 Introduction

Portfolio optimization consists of a portfolio selection problem in which we want to find the
optimum way of investing a particular amount of the money in a given set of securities or assets, see
Fernandez and Gomez (2007). While without any information about the investor's risk attitude we are not
able to find one optimal portfolio, we are looking for the Pareto efficient frontier. This frontier contains all
possible portfolios for which we are not able to lower the risk with the same level of the expected return or
to heighten the expected return without increasing the risk.

The model in which we consider simple portfolio optimization without any limitation on the
maximum number of the different assets we want to hold will be referred as general portfolio optimization
problem,

argxmin k-p(Rxx)-(1-k)-E(RxX)

W= ixizl (1)

X, 20, i=1..,n

where w is the vector of optimal weights, o is chosen risk measure and E(Rxx) is portfolio expected

return and k is the parameter which specifies the investor’s risk aversion. Matrix R represents random
returns from particular assets (investment possibilities).

As any other model even the unconstrained portfolio optimization model has many premises, which
make it very simplified. On the one hand it allows us to find the solution easily; on the other hand the model
could not be utilized for a real world application. In the real world application we want to limit the number
of assets we invest in. Introducing m as the desired number of different assets in the portfolio, we can extend
the previous model to the cardinality constrained case. The model in which we limit the number of different
assets held will be referred as cardinality constrained portfolio optimization problem,

argmin k- p(Rxx)—(1-k)-E(Rxx)
> x =1
w=2< i @)
lei>0_m
i=1
X =0, i=1..,n

where 1, is logical variable taking value of 1 when x is true and 0 otherwise.

26 sciencesconf.org:meta2016:110403



There are also different risk measures o which can be applied, such as variance, which leads to

Markowitz (1952) mean-variance quadratic programming problem, Value at Risk (VaR), Conditional Value
at Risk (CVaR) and others. In our work we focus on CVaR, which is defined as mean loss if it exceeds VaR,
see e.g. Rockafellar and Uryasev (2002). Assuming a random-variable profit X, with known cumulative
distribution function Fx, VaR can be defined as follows,

VaRg , =—inf{xeR:Fy (x)2a}, ®)
and the definition of CVaR is following:
CVaRy , =-E[x|x<-VaRy, | 4)

Having the vector of (future) possible profits X, each with the equal probability, CVaR at probability level
a can be estimated as follows,

[en]-1 _
CVaR, , :—1{3 3 X, {a_[anj 1] x[an]]

n <
B , (5)
where [x] stands for the smallest integer larger than x and n is the quantity of data utilized for CVaR
calculation. In this case the probability of occurrence is the same for each element of X.

It is obvious that optimization problem (2) in case of variance as a risk measure represents a mixed-
integer nonlinear (quadratic) programming problem for which the computationally effective algorithm does
not exist, see Chang et al. (2002). In this work we apply the binary particle swarm optimization (BPSO)
method and other heuristic methods in order to solve the problem (2) for variance and CVaR as a risk
measure and we compare the obtained results.

The original particle swarm algorithm was introduced and discussed in Eberhart and Kennedy
(1995) and Kennedy and Eberhart (1995). It imitates birds flocking and fish schooling as it is searching in
D-dimensional real numbers space for the best position. In this algorithm the certain number of particles is
utilized, each particle's position representing solution of the problem. Particles move across the search space
partially randomly and partially in the dependence of the personal and global best position discovered so far.
Obijective function imitates the space richness for food. In Kennedy and Eberhart (1997) the particle swarm
algorithm was modified to operate on a binary variables and binary version of the particle swarm algorithm
was introduced.
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In this work potential usage and impact of various algorithms of metaheuristic specification for
portfolio optimization are studied. In particular, we focus on problems, in which different risk
and dependency measures are involved. First of all, we use semidefinite positive correlation
measures consistent with the choices of risk-averse investors and propose new portfolio
selection models that optimize the relation between the portfolio and one or two market
benchmarks. We also consider the large scale portfolio problems. Obviously, particular
approaches are evaluated using real date from various markets.
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The Electric Multi-Depot Vehicle Routing Problem (eMDVRP) is a variant of the classical MDVRP problem,
with additional constraints related to the use of electric vehicles; the vehicle can travel a limited distance from

the depot, but the vehicle can go to a “recharge point” where it can be recharged (total or partially) to increase
its maximal distance. The classic neighborhood (example, 2-opt) easily leadsto an infeasible solution,and then
we will focus on developing a new set of good neighborhoods for this problem. Efficient neighborhoods are
presented, and used in trajectory-based metaheuristics. Additionally, to verify the correct implementation of the
algorithms are considered instances from the VRP and MDVRP, comparing the solution quality and execution
time.

Keywords: vehicle routing problem, electric vehicles, tabu search, variable neighborhood
search.

1 Introduction

Due to new regulations and further technological progress in the field of electric vehicles, the
research community faces the new challenge of incorporating the electric energy based restrictions into
vehicle routing problems [1], examples are the minimization of emissions [2], energy consumption [3],
reverse logistics and others [4], [5]. The advances in the use of electric energy for motors defines a new
generation of problems related to the battery of the vehicles [6], [7], recharge system [8], electric vehicles
battery swap stations location routing problem (BSS-EV-LRP) [10], hybrid of traditional and electric
vehicles, etc. [7] presents key contributions of combinatorial optimization for an efficient electric vehicles
management, energy shortest path problem, energy vehicle routing problem, facility location, and electric
vehicles redistribution.

Historically, however, six major barriers to alternative fuel vehicles success have arisen: limited
numbers of refueling stations, high refueling costs, onboard fuel-storage issues (i.e., limited range), safety
and liability concerns, improvements in the competition (i.e., more efficient combustion engines), and high
initial costs for consumers [9]. The logistics giant DHL announced a new pilot project which would
introduce electrified delivery vans for its vehicle fleet in US and Germany [10]. In 2013, UPS had more than
100 electric vehicles in its fleet operating in US [10]. Companies like Amazon are evaluating the use of
drones for delivery [11].
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Figure 1: Example of eVRP, source: [54]

In the literature, there exists research to obtain a solution for multiple techniques that can be
classified into two main groups. The exact algorithms are procedures that can obtain the optimal solution
(when the upper bound is equal to the lower bound) but needs a lot of computation time, e.g., dynamic
programing [12], branch and cut [13], branch, cut, and price [14], network flow formulation [15], and integer
linear programing [16]. Heuristics algorithms (and metaheuristics) are procedures than can obtain a solution
of good quality, without guaranteeing optimality in a short computing time, e.g., saving algorithm [17],
cluster first—route second [18], tabu search [19], probabilistic change of neighborhood [20], granular tabu
search [21], very large neighborhood [22], evolutionary algorithm [23], ant colony [24], and memetic
Algorithm [25]. Surveys of techniques of solution can be found in [26] and [27]. The granular tabu search
was originally proposed by [28] in the context of a tabu search (TS) for the CVRP. Granular neighborhoods
are defined by means of a restricted set of arcs, which is determined by restricting the neighborhoods to
include only elements which are likely to be part of high-quality solutions. For the CVRP, [28] showed that
their granular TS (GTS) is able to strongly reduce run-time while nearly keeping solution quality.
Subsequently, granular neighborhoods have been successfully used in solution methods addressing the
following routing problems: a dynamic VRP with soft time windows, the split delivery VRP, the multi-depot
VRP, the capacitated location-routing problem, the dial-a-ride problem and the team orienteering problem
with time windows [29].

2  The Electric Multi-Depot Vehicle Routing Problem (eMDVRP)

This problem is a variant of the classical MDVRP problem, with additional constraints related to the
use of electric vehicles; the vehicle can travel a limited distance from the depot, but the vehicle can go to a
“recharge point” where it can be recharged (total or partially) to increase its maximal distance. This problem
can be evaluated by the classical objective function of the minimal total distance, or by a bi-objective
perspective. The dataset of a similar problem can be adapted to this problem and published online to
compare performances with other research works. The eMDVRP is variant of the classic MDVRP, but the
classic neighborhood (example, 2-opt) easily leads to an infeasible solution, and then we will focus on
developing a new set of good neighborhoods for this problem.

The hypothesis is: A granular neighborhood can be designed that exploits the structure of the
eMDVRP, and be used in trajectory-based metaheuristics.
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a. Granular search space

The proposed approach use the granular search space proposed in [28], which is based on the
utilization of a sparse graph containing the edges incident to the depots, the edges belonging to the best
solutions found so far, and the edges whose cost is smaller than a granularity threshold® = 8z, where Z is
the average cost of the edges in the best solution found so far, and £ is a sparsification factor which is
dynamically updated during the search.

b. Neighbourhood structures

The proposed approaches allow infeasible solutions with respect to the depot and the vehicle
capacities. Given a feasible solution S, we assign to its objective function F; (S) a value equal to the sum of
the traveling costs of the edges belonging to the routes traversed by S. In addition, for any solution S
infeasible with respect to the depot capacity, we add to F; (S) a penalty term obtained by multiplying the
over depot capacity by a dynamically changing penalty factor. A similar approach is used to calculate the
objective function value of any solution S infeasible with respect to the route capacity (for further details see

[19]).

c. Computational results

In this paper we present the design and implement of an efficient framework for the eMDVRP. The
performance of the proposed algorithms have been evaluated by considering benchmark instances adapted
from the literature. Additionally, to verify the correct implementation of the algorithms (efficiently and
effectively) is considered the case when the vehicle starts with infinite energy from the depot, transforming
the problem in the classical MDVRP; also considered the case when the amount of deposits is only one, that
is, the classical VRP. A comparison with a set of classic benchmark instances is presented for these
problems, comparing the solution quality and execution time.
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1 Introduction

The quadratic three-dimensional assignment problem (Q3AP) is a generalization of the well-known
quadratic assignment problem (QAP). It is one of the hardest permutation problems and has recently gained
interest for its application in the hybrid automatic repeat request (Hybrid ARQ) protocol in wireless
communication systems and whose solution can significantly increase throughput and reduce the cost for
providing reliable digital transmission over noisy fading channels. For optimizing a Hybrid ARQ protocol,
solving the Q3AP consists of finding an optimal symbol mapping over two vectors. Whereas, a single vector
protocol can be solved with the QAP. See [5]

The Quadratic Assignment Problem (QAP) is one in which N units have to be assigned to N sites in such
a way that the cost of the assignment, depending on the distances between the sites and the flows between
the units, is minimal.

The QAP can be formulated as follows: Given two N X N matrices, F=[fy] where fi is the flow between

units i and k; and D=[d;,] where d;, the distance between sites j and n. The problem consists of finding a
permutation p over the set S= {1, 2,..., N} that minimizes the following cost function:

Cost (p) = Xic1, N 2k=1,..~ Jikdpip(k)

The QAP is one of the most difficult NP-hard combinatorial optimization problems. Solving large size
instances of the QAP is still computationally challenging [1].

2 The Quadratic Three-Dimensional Assignment Problem

Pierskalla [2] introduced the Quadratic 3-dimensional Assignment Problem (Q3AP) in a technical
memorandum. Since then, little on the subject has appeared.

Hahn et al. [3] re-discovered the Q3AP while working on a problem arising in data transmission system
design. The problem consists of finding bit-to-symbol mappings for two (re)transmissions in the Hybrid
Automatic Repeat Request protocol (HARQ) that minimizes the BER (Bit Error Rate) of the two
transmissions. According to the explanation given in [4] and [3], in data transmission systems, when a data
packet is sent through variably fading channels, some errors may remain in some bits (i.e., binary digits) of
the received message, even after error correction mechanisms are used. The HARQ mechanism consists of
sending to the transmitter a retransmission request for the same packet.

The Q3AP is an extension of two NP-hard problems, the QAP and the 3-index assignment problem
(3AP). Thus it is easy to see that the Q3AP is also NP-hard.
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If we use the facility location example, a Q3AP problem can be seen as a facility to location to managers
assignment. Indeed, as illustrated in:

N N N

Z Z Z bijp Lijp

i=1 j=1 p=1
N

(1)

min

] N I ]
+ Z Z Z Z Z Z (‘ijpknq Lijp Tkng

N N N N
i =1 k=1 n=1 g=1

i=1 j=1 p:
relnNJNP z=0,1 (2)

With: 1, J, P sets of the same cardinality N, and:

N N
1= {; >0 Yz =1fori=1, .., \} (3)

j=1p=1

N N
J= {.f,- 20 ) aip=1forj=1, \} (4)

i=1 p=1

N N
P= {f z UZZJQJP =1forp=1, ...._'\"} (5)
=1 j=1

Equation 1, Q3AP is formulated in [3] as an extension of the formulation of the QAP. If we consider a
diversity mapping problem in which a mapping should be used between N modulation symbols and N
segments of the message to send, the cost coefficients Cijpng In Equation 1 refer to the simultaneous
assignment of the symbols j and n to the bit strings i and k in the first transmission and the assignment of
symbols p and q in the second retransmission. Equations 3, 4 and 5 express the uniqueness constraints of the
two assignments (one symbol to one segment and vice versa in the two bit-to-symbol mappings)

In [3], artificial Q3AP instances are obtained from QAP using Equation 6. F and D are the two matrices
representing the flow and the distances between factories/locations in QAP instances.

Cijpkng = Fir*DjnxFipxDpg: (1,4, p. k,n, g = 1.N) (6)

If we consider the assignment of N message segments to N adjacent modulation symbols during two
transmissions, a solution for the Q3AP can be represented by two permutations z and y of numbers in the set
{1,2, ..., N} referring to the labels of the N message segments to send during the two transmissions. The
permutation formulation of Q3AP is derived from the permutation formulation of QAP (see Equation 7). z(i)
and w(j) respectively indicate the bit string assigned to the modulation symbol i and j in the first and the
second transmissions.

minf(mw, ) = Z Z Cir(i)ye(7)im(i) v () (7)
=1 j=1
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If among exact algorithms, the branch-and-bound method is the most successful one, the lack of a sharp
lower bound technique in this algorithm is one of the major difficulties. The fact that the Q3AP is NP-hard is
not sufficient to explain its difficulty, as we can now solve exactly very large instances of a great number of
NP-hard problems. The homogeneity of the values of the solutions for most of the applications, due to the
structure of the problem (scalar product of the matrices) is a more convincing explanation. Indeed, first, we
have many solutions whose value is close to the optimum. So, even when the best solution is obtained, it is
very hard to prove its optimality.

3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) algorithm is inspired by social behavior patterns of organisms that
live and interact within large groups. In particular, PSO incorporates swarming behaviors observed in flocks
of birds, schools of fish, or swarms of bees, and even human social behavior. This method was proposed by
Kennedy and Eberhart, 1995[6].

The classical PSO model consists of a swarm of (solution) particles, which are initialized with a
population of random candidate solutions. The particle swarm moves iteratively through the d-dimension
problem space to search for new solutions, where the fitness f, can be calculated as the certain qualities
measure. Each particle has a position represented by a position-vector x; (i is the index of the particle), and a
velocity represented by a velocity-vector v;. Each particle remembers its own best position so far in a vector
pi. The best position-vector among the swarm so far is then stored in a vector p,. During the iteration time t,
the update of the velocity from the previous velocity to the new velocity is determined by Eq.(8). The new
position is then determined by the sum of the previous position and the new velocity by Eq.(9).

i(t+1) = woyilt) + ary(pit) = % () + canalpgilt) = x;(t)) (8)
xi(t+1) = x;(t) +v;(t+1) 9)

where rl and r2 are the random numbers in the interval [0,1], ¢1 is a positive constant, called as coefficient
of the self-recognition component, c2 is a positive constant, called as coefficient of the social component.
The variable w is called as the inertia factor, whose value is typically setup to vary linearly from 1 to near-0
during the iterative processing. From EQ.8, a particle decides where to move next, considering its own
experience, which is the memory of its best past position, and the experience of its most successful solution
particle in the swarm, it is also a parameter to control the impact of the previous velocities on the current
velocity [7].

4 PSO for the Q3AP

In order to guide the particles effectively in the search space, the maximum moving distance during one

iteration is clamped in between the maximally different velocities [~Vmax, Vmax]-

Evaluation of each particle in the swarm requires the determination of the permutation of numbers 1...n
since he value of function z in Q3AP problem is a result of the sequence.

In this paper, we use a heuristic rule called Smallest Position Value (SPV) [8] to enable the continuous
PSO algorithm to be applied to all class of sequencing problems, which are NP-hard in the literature. By
using the SPV rule, the permutation can be determined through the position values of the particle so that the
fitness value of the particle can then be computed with that permutation.
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The pseudo-code for particle swarm optimization algorithm is illustrated in Algorithm 1

Algorithm 1: Particle Swarm Optimization (PSO)

Initialize parameters

Initialize population

Find sequence

Evaluate

Do { Find the personal best
Find the global best
Update velocity
Update position
Find sequence
Evaluate

} While (Termination)

A population of particles is constructed randomly for the PSO algorithm of the QAP problem. The
continuous values of positions are established randomly. The following formula is used to construct the
initial continuous position values of the particle: Xjj=Xmin(Xmax = Xmin) X U(0,1), where Xmin = 0.0 , Xmax = 4.0
and U(0,1) a uniform random number between 0 and 1. similar formula as follows Vij=Vmin(Vmax ~Vmin)*U(0,1),
where Viyin = -4.0, Vmax = 4.0

Step 1: Initialization

« Set k=0, m=size of swarm.

* Generate m particles randomly as explained.

* Generate initial velocities of particles randomly.

* Apply the SPV rule to find the sequence with the best fitness value.

* Evaluate each particle i in the swarm using the objective function Z; for i=1,..., m.

* For each particle i in the swarm, set best personal position along with its best fitness value.
* Find the best fitness value Z,=min {Z;} for i=1,..., m with its corresponding position.
* Set global best with its fitness value.

Step 2: Update iteration counter.

ek =k+1.

Step3: Update inertia weight.

* W=W* a, Where « is the damping ratio.

Step 4: Update velocity (Eq 8).

Step 5: Update position (Eq 9).

Step 6: Find Sequence.

*Apply the SPV rule to find the sequence with the best fitness value.

Step 7: Update personal best.

« Each particle is evaluated by using its sequence to see if personal best will improve. That is, if f (x) < f(PB)
for i=1,...,m, then personal best is updated.

Step 8: Update global best.
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* Find the minimum value of personal best.
« If f (x) < f (GB), then the global best is updated.
Step 9: Stopping criterion.

e If the number of iteration exceeds the maximum number of iterations, then
stop, otherwise go to step 2.

5 Experimental results

In this section the results of the implementation of the algorithm is described. A PSO algorithm
presented for the Q3AP problem was coded in the C++ programming language.

We used the following parameters for the PSO. Social and cognitive parameters, and uniform
random numbers are taken as ¢; = ¢, = 2 and rl, r2 respectively uniform numbers are taken from (0,1).
Initial inertia weight is set to wp = 1.0. Finally, the decrement factor « is taken as 0.99.

It is clear that the performance of the approximated algorithms is affected by parameter tuning. So,
at first we do tuning process, to obtain good values for the key parameters. We use nug-8 instance of
QAPLIB to test the effect of PSO parameters.

We increase the number of iterations of the algorithm ranging to 1000. The figure below shows the
results. The first point is that as the number of iterations increases, the quality of solutions will improve.
There is another point noticeable in which the cost decreased,; it is the choice of the lower and upper bound
of variables as well as the choice of the learning coefficients (c;, C;).

560
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320 |

cost globale

290 -

180 |

80
1 I I 1 I I

0 150 300 450 600 750 900
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Figurel: the impact of changing PSO parameters.

We choose the size of swarm from the set {80}, the lower one is the best results we found 168 using
the values parameters given before, and the upper one is one of simulations when we changed one or more
than one of the parameters.
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6 Conclusion

The quadratic 3-dimensional assignment problem (Q3AP) is a very difficult combinatorial
optimization problem and has reviewed nowadays existing methods for solving such problem included.

In this paper we defined the approach based on a particle swarm optimization for the quadratic three
dimensional problem. This work is in-progress, we evaluated the performance of our approach and compare
it with what existed to tell that the result that the proposed approach returned was a close value from the
optimal which is 134 for nug-8 for the quadratic three dimensional assignment problem but it still a poor
result, and we have plans to improve that result with additional experiments.
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Genetic Algorithm Guided By Pretreatment
Information For The 0-1 Multidimensional Knapsack
Problem
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Abstract This paper presents an improved version of the Genetic Algo-
rithm (GA) for solving the well-known 0-1 Multidimensional Knapsack Prob-
lem (MKPO1). The Genetic Algorithm Guided by Pretreatment information
(GAGP) is composed of two steps, in the first, a greedy-based simple pre-
treatment extracts the subset of items that likely to be contained in the best
solutions. In the second, the population initialisation and the fitness function
of a standard GA are based on the pretreatment information, in addition to
an efficiency update operator. The pretreatment information has been investi-
gated using the CPLEX deterministic optimiser. In addition, GAGP has been
examined on the most used MKPO1 data-sets, and compared to several other
approaches. The obtained results showed that the pretreatment succeeded to
extract the most part of the important information. It has been shown, that
GAGP is a simple but very competitive solution.
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1 Introduction

The MKPO1 is composed of N items and a knapsack with m different capacities
¢; where ¢ € {1,...,m}. Each item j where j € {1,...,n} has a profit p; and
can take w;; of the capacity i of the knapsack. The goal is to pack the items
in the knapsack so as to maximize the profits of items without exceeding the
capacities of the knapsack. The MKPO1 can be represented as the following
integer program:

Maximize : ija:j (1)
j=1
n

Subject to: sz’jl‘j <¢ ite{l...m} (2)
j=1

xzj € {0,1} je{l...n} (3)

During the past few decades several variants of GA have been proposed,
all of them aim to increase the performance of GA and boost its convergence.
Most of these ideas are either based on changing the GA operators such as:
crossover and mutation (e.g. one-point, two-point, cut and splice, three par-
ents, uniform, flip bit, Boundary, non-uniform, uniform, etc.), or based on
modifying the GA’s evolutionary behaviour, such as: Hybrid GA (Rezoug et al.
2015; Valls et al. 2008), Distributed GA (Adeli and Kumar 1995), Adaptive
GA (Alavidoost et al. 2015), Parallel GA (Sudholt 2015), Genetic Program-
ming (Poli and Koza 2014), etc. An extended overview of the GA variations is
available in (Castro et al. 2013). The focus here is only on the methods that
are related to the guided GA concept.

The concept of prozimate optimality suggests that, in most cases, the best
solutions have a similar structure. Senju and Toyoda (1968) presented a primal
greedy gradient algorithm for the MKPO1 that establishes a decreasing sort of
the items such as the most priority is given to those most likely to form the
best solution. The sort is calculated according to an efficiency measurement
that try to find the compromise between the profit and the weight. Latter
Puchinger et al. (2006) applied the principal of efficiency measurement in ad-
dition to the core concept for reducing the size of the problem data to only the
most relevant items. On the other hand, the process of GA is stochastic, this
leads to an important useless work. Our aim in this this paper is to reinforce the
GA process using the useful information about the items. To this purpose, the
Genetic Algorithm Guided by Pretreatment information (GAGP) is proposed.
Firstly, GAGP applies the primal greedy with the core concept decomposition
to extract a useful information about the subset of important items. Secondly,
specific population initialisation, fitness function and update efficiency mea-
surement operators augment a standard GA by exploiting the pretreatment
information. In GAGP, an important rang of solutions are avoided and the
process does not consider the non relevant solutions.
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The paper is structured as follows: Section 2 gives an overview of the liter-
ature review related to the GA with guidance. The proposed algorithm GAGP
is introduced in Section 3. Section 4 presents the conducted experiments and
the obtained results. The conclusions and final remarks are drawn in Section 5.

2 Related Works

There are several methods related to the guided GA concept in the literature,
that has been applied to a wide range of applications. For solving the Course
Timetabling Problem, the approaches by (Jat and Yang 2009; Yang and Jat
2011) use a memory denoted MEM to record useful information to guide the
GA process and improve its performance. MEM is a list of limited size, in which
a list of room and time slot pairs is recorded. This information is integrated
into the crossover operator of the proposed guided GA. Other researchers used
an external structure to guide GA such as (Acan and Tekol 2003; Louis and Li
1997). Another approach for guiding the GA is through the use of approximate
probabilistic models.

In (Chen et al. 2012; Zhang 2009) The GA is augmented with an approxi-
mate probabilistic model to guide the crossover and mutation operators. The
probabilistic model is used to estimate the quality of candidate solutions gen-
erated by the traditional crossover and mutation operators. It also evaluates
the quality of candidate solutions. This estimation enables the crossover and
mutation operators to generate more promising solutions.

A subset of the genetic operators is guided. The proximate optimality prin-
ciple assumes that good solutions have a similar structure. Based on this prin-
ciple, the guided mutation proposed by (Zhang et al. 2005) uses a probability
model inspired by estimation of distribution algorithms EDA mutation opera-
tor. The generated offspring by this operator is constructed based on the best
parent so far and a dynamic probability model and a probability 5. This al-
lows conducting the searching process in promising areas. A guided crossover
operator has been proposed by (Rasheed 1999). The crossover operator works
by using guidance from all members of the GA population to select a direc-
tion for exploration. The first parent is selected by the selection operator. To
select the second parent, a metric named Mutual_fitness is calculated for all
the other chromosomes. The chromosome which has the maximum value is
selected. One offspring is generated by crossing the parents in a point chosen
randomly such that the offspring resulting is the best.

3 Genetic Algorithm Guided by pretreatment information for The
MKPO1

The algorithm in this paper is motivated by the observation that in may opti-
misation real-world problem, we may have some prior information about the
components/patterns that are likely to appear in the good solutions. For exam-
ple, in MKPO1, it is possible using linear relaxation or the ”optimal fractional
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solution” (Dantzig 1957; Shih 1979) to predict some of the items that are likely
or unlikely to appear in the good solutions. This study proposes a method for
using such prior information as an additional guide for the GA evolutionary
process for the MKPO1 problem. By guide, we mean any structure external to
GA, which maintains its original composition and is used to drive its search
process. This can be through a subset of operators, in order to accelerate the
search process and improve the speed of convergence. This section aims to
describe the GAGP components.

3.1 Pretreatment

The guiding information is based on the work by (Puchinger et al. (2006)).
The items are sorted in decreasing order according to a statistical efficiency e;
based on the profit and the cost. In simple words, the items are sorted based
on how likely each item to appear in high performing individuals, the item at
the top of this list are the items that are likely to be selected while the items at
the bottom of the list are the items that are unlikely appear in good solutions.
However, it is important to note here that this list is just an estimate and
not a predefined part of the solution. It should be noted also that the Greedy
heuristic as by Senju and Toyoda (1968) only based on the efficiency sorting
is not an effective solution for the strongly correlated problem instances of the
MKPO1 (Huston et al. 2008).

est = b (4)

T wi (T wa — i)

The sorting operation allows favouring items that have a good compromise
(i.e. efficiency) between the average profit and overall capacity. The efficiency
of an item is high if its profit is high while its required global capacity is low.
The sorted items are split into three sets where the value of each variable is
assigned as follows:

— Xi : x; =1 The variables have the best efficiency e;. These variables are
most likely to build the best solutions even the optimal solution.

— Core : x; =7 The variables have the values of the efficiency e; very close.
In this group, it is difficult to determine the best.

— Xo : 7 = 0 The variables have a very low efficiency e;, in other words, the
profit is low or the capacity is large or both.

The guide is represented by the items of X; U Core U Xg. The sizes of
X1, Core and X are determined as follows: Construct a feasible solution by
adding the items in the order. The item that makes the solution infeasible
represents the center of Core. The size of each part of the guide depends on
the size of Core. Set the size of Core defines the size of the other parts.
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3.2 Guided Genetic Algorithm Optimisation

The GAGP chromosome consists of the set of the items to be added to the
knapsack. GAGP uses the integer representation, where each gene presents an
item ID. The items are coded as integer numbers. A chromosome is formed only
by the number of items that it contains. This representation allows reducing
the size of the processed data.

1. Initial population. GAGP algorithm uses a special initialization process
which allows the GA to make use of the prior information available about
the items, and in the same time generates a diverse initial population to
ensure exploration of the search space. A chromosome is generated from the
items of X; completed by items generated randomly. In each chromosome,
X is integrated with a probability «. If « is set to zero this means that all
the items in each individual are selected randomly, while & = 1 means that
each individual in the initial population contains all the items in X;. This
method allows having an initial population of good quality by integrating
X, and ensures the diversification by adding the rest randomly.

2. Fitness evaluation. Besides the population initialisation, the guidance by
the pretreatment information is integrated in the GA by this operator. The
fitness function f(j) is evaluated according to Eq. 1. The efficiency e; is
introduced in its evaluation according to Eq. 5. Each generation, the fitness
value of each chromosome is calculated. The fitness formula allows giving
more chance to the chromosome that has a high efficiency to be selected
more than the others.

f) = Zejpﬂj (5)
=0

3. Genetic operators. GAGP uses standard genetic crossover and mutation
operators. A tournament selection of size 5 is used as the selection method,
and the random single point method is applied with a probability p. as a
crossover method. For the mutation operator, the random multiple point
bit flip with the probability p,, is adopted. And finally, a reproduction
operator copies a subset of individuals with the probability p,. such as
Pe +Pm +0r = 1.

4. Update efficiency. The Sorting efficiency is not always efficient especially
for the problems with strong correlation. A step of efficiency update is
proposed that aims to make a perturbation in the items efficiencies. Two
items 7, 7', 7 € X7 and are selected and their efficiency is permuted. Rather
than maintaining the same guidance, the search process diversify the guide
with the items in X; and Core. This modification has an impact on the
fitness evaluation and so on the whole process of GA.

5. Stopping condition The process of optimisation is repeated until a specific
number of iteration is reached.

The algorithm could be described by the following pseudo-code (Algorithm 1).
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Algorithm 1 The GAGP pseudo-code.

Require: MKPO01 instance
Ensure: a feasible solution S
: calculate the efficiency e; for each variable
sort the items according to the efficiency measurement
: calculate X1, Core and X of the guide
: initialize the population pop with X; and «
for ctr =1 to ng do
evaluate the fitness for each chromosome in pop according to the fitness equation
crossover with (pc)
mutation with (pm)
9:  reproduction with (pr)
10: select randomly items j, j/ such as j € X1, j' € Core and permute their efficiencies
11: end for
12: return the best solution S*.

PP

4 Experimental Results

The experiments aims to compare the proposed GAGP with the state-of-art
results reported in the literature (Section 4.2). For an experimental purpose,
and because the chosen sorting method concerns MKPO01, it is natural to use
data from this problem. The test platform is a Toshiba laptop with 4GB RAM
capacity and an Intel Core (TM) i5-4200 M 2.5 Ghz CPU. The Java language
is used to implement the approach. As for the test data, two well known bench-
marks from the OR-Library! are used.

4.1 Analytical study of the guidance

This analytical study compares firstly, between the items of the optimal so-
lution and the two main parts of the guide (i.e. X; and Core) and secondly,
between the optimal solution and the solution obtained by GAGP. The aim
is on the one hand, for understanding how significant is the sort and measure
its effective impact on the GA; On the other hand, to find if the GAGP does
effectively follow the guide and what happens to drop the GA in the wrong
solution whether because of the guide or because of the optimisation process
itself.

The composition of the optimal solution S*, calculated using the deter-
ministic CPLEX optimizer 12.5, is compared to a feasible solution S obtained
by GAGP. Also, the items of the X; and Core and the placement of the
items of the S* in the three parts of the guide are given (where +, * and -
corresponds to item in Xi, in Core and in X, respectively). The first four
instances (OR5x100.0.25 1-4) are used to conduct this analysis. Finally, the
Distance From the Optimum D.F.O of the solution calculated by GAGP is
given. The obtained results of the comparison are reported in Table 1.

L http://people.brunel.ac.uk/ mastjjb/jeb/orlib/files/
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Table 1 Analytical comparison of GAGP feasible solution composition to the composition
of the optimal solution obtained by CPLEX and the composition of the parts of the guidance
information using the OR5x100.0.25 1-4 instances.

sa s*b G°¢ X1 S S* G X1 S S* G X1 S S* G X1
T T Es T T 3 T 3 7 Z— 1 0 0 * 3
3 3 * 4 3 10 4+ 10 10 11 4+ 11 1 1 * 5
6 6 + 6 10 18 * 27 11 13 4+ 13 3 3+ 11
8 8 + s | 20 20 * 28 13 18 4+ 18 5 5 4+ 12
10 10 - 23 27 27 + 34 18 19 - 21 6 8 - 22
12 18 * 26 | 34 28 4 45 21 21 + 28 8 1+ 27
17 23 + 31 36 34 4+ 49 | 28 26 - 37 11 13 - 28
23 25 - 43 | 39 36 - 56 | 32 28+ 14 12 22 4 30
26 26 + 49 | a1 41 * 57 | 34 32 * 48 22 24 - 34
28 28 * 56 | 42 42 * 61 36 34 - 55 24 27 4+ 35
29 29 * 62 | 45 45  + 62 37 37+ 69 26 30  + 42
31 31 + 65 48 48 * 73 | 42 42 * 72 27 34+ 53
41 43 + 68 | 49 49  + 90 | 44 44+ 74 | 30 35  + 63
43 49 + 76 | 53 53 - 91 48 48+ 84 | 34 42+ 69
49 56 + 78 | 56 56  + 93 51 51 - 87 | 35 49 * 70
56 61 - 85 | 57 57  + 95 53 55  + 92 | 42 53+ 78
62 62 + 92 | 58 58 - 99 | 55 59 * 49 54 - 86
65 65 + 61 61 + 59 60 - 53 55 - 94

68 68 + Core | 62 62 +  Core | 60 64 *  Core | 54 56 *
76 70 - 3 | 70 64 * 18 | 64 72+ 10 55 58 *  Core
78 73 * 15 73 73+ 20 | 72 74+ 32 56 61 * 0
84 76 + 18 | 74 74 * 41 74 78 * 36 | 61 63  + 1
85 78 + 28 | 81 81 * 42 78 79 - 42 | 63 74 - 15
91 84 - 29 | 88 88 * 48 | 79 84  + 59 | 68 78+ 49
92 85 + 34 | 90 90  + 64 | 84 87  + 64 | 70 79 - 56
94 91 - 66 | 91 91 + 74 | 87 92+ 78 76 86  + 58
95 92 + 73 | 92 93 4+ 81 92 93 * 93 79 94 4 61
98 95 - 81 93 95 4+ 88 93 96 * 9 | 86 95  + 65
98 + 98 | 95 99  + 92 96 99 * 99 | 95 68
99 95

D.F.09 = 0.82 D.F.09 = 0.51 D.F.09 = 0.23 D.F.0 = 0.50

2§ : Items of the solution obtained by GAGP

b S Items of the optimal solution obtained by CPLEX

€ G : Group of S* item in the guide (item is : + € X7, - € X or * € Core)

d D.F.O : Distance Form the Optimum in % of the GAGP solution

A percentage of 75 — 90% of the items in S* are included in X; or Core.

Similarly, S contained 75 — 90% of the items of S*. Almost the same items
initially contained in X; and Core are maintained in S. Some (3 to 7) items
of the excluded part Xy appear in S* at the same time some were introduced
in S by the mutation operator. In the first three instances, at most one item
form X; has not been contained in S*. GAGP could be more effective by
introducing a better mutation operator. The efficiency measurement function
would be more effective if Core contained a slightly more items of Xy. Most
items of Core were components of S*, that supports the efficiency update
operator proposed in GAGP.

4.2 Comparison with the literature

As with most optimisation problems, MKPO1 heuristics could be classified in
two groups: the first isconstructive heuristics, that aim to construct a solution.
The second is improvement heuristics which aim to improve a given initial solu-
tion normally generated first by a constructive heuristic. The proposed method
is considered as a constructive heuristic. However, in order to demonstrate the
performance of the proposed method, the performance of the GAGP is com-
pared with both constrictive and improvement approaches. The following is
short description of the methods (constructive and improvement) used in the
comparison presented in this section. GAGP is compared with the standard
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GA algorithm and other state-of-the-art optimisation methods reported in
the literature. GAGP is compared to the following constructive approaches :
PECH (Primal Effective Capacity Heuristic) (Akcay et al. 2007); MAG (Mag-
azine and Oguz 1984); VZ (Volgenant and Zoon 1990); PIR (Pirkul 1987) and
SCE (Shuffled Complex Evolution) (Baroni and Varejao 2015). GAGP is also
compared to the following improvement approaches : CB (Chu and Beasley
1998); NR (P) (New Reduction (Pirkul)) (Hill et al. 2012) and MCF (Modified
Choice Function - Late Acceptance Strategy) (Drake et al. 2015). The com-
parison is shown in Table 2. As shown in table 2, GAGP is competitive with
both construction and improvement methods and has managed to outperform
both group of methods on a few instances.

Table 2 Comparison of results obtained by GAGP with GA, constructive and improvement

heuristics
Constructive Improvement
n m let GAGP GA PECH MAG VZ PIR SCE CB NR(P) MCF
5 100 0.25 0.35* 2.17 7.3 13.6 10.3 1.6 3.5 0.99 0.94 1.09
0.50 0.48 0.86 3.4 6.7 6.9 0.77 2.6 0.45 0.44* 0.57
0.75 0.21* 0.42 2.02 5.1 5.6 0.48 1.1 0.32 0.22 0.38
250 0.25 0.58 4.03 7.1 6.6 5.8 0.53 4.3 0.23* 0.46 0.41
0.50 0.36 1.15 3.2 5.2 4.4 0.24 3.3 0.12% 0.17 0.22
0.75 0.23 0.58 1.8 3.5 3.5 0.16 1.5 0.08* 0.1 0.14
500 0.25 0.51 4.27 6.4 4.9 4.1 0.22 4.6 1.56 0.15* 0.21
0.50 0.36 1.45 3.4 2.9 2.5 0.08 3.6 0.79 0.06* 0.1
0.75 0.22 0.65 1.7 2.3 2.41 0.06 1.8 0.48 0.03* 0.06
10 100 0.25 1.0 2.40 8.2 15.8 15.5 3.4 6.8 0.09* 2.05 1.87
0.50 0.53 1.53 3.7 10.4 10.7 1.8 5.1 0.04* 0.81 0.95
0.75 0.27 0.53 1.8 6.1 5.67 1.1 2.4 0.03* 0.44 0.53
250 0.25 0.75 3.56 5.8 11.7 10.5 1.1 6.9 0.51%* 0.88 0.79
0.50 0.48 1.35 2.5 6.8 5.9 0.57 5.4 0.25* 0.39 0.41
0.75 0.27 0.66 1.5 4.4 3.7 0.33 2.8 0.15* 0.19 0.24
500 0.25 0.71 3.61 5.1 8.8 7.9 0.52 6.8 0.24* 0.34 0.44
0.50 0.4 1.44 2.4 5.7 4.1 0.22 5.8 0.11%* 0.14 0.2
0.75 0.29 0.71 1.2 3.6 2.9 0.14 3.4 0.07* 0.1 0.13
30 100 0.25 1.56* 2.27 6.8 17.3 17.2 9.1 8.6 2.91 2.24 3.61
0.50 1.07* 1.72 3.2 11.8 10.1 3.51 6.6 1.34 1.32 1.6
0.75 0.36* 0.78 1.9 6.58 5.9 2.03 3.6 0.83 0.8 0.97
250 0.25 1.66 3.20 4.8 13.5 12.4 3.7 8.3 1.19* 1.27 1.75
0.50 1.0 1.46 2.1 8.6 7.1 1.5 6.9 0.53* 0.75 0.79
0.75 0.5 0.73 1.2 4.4 3.9 0.84 3.8 0.31%* 0.38 0.43
500 0.25 4.07 3.50 3.7 9.8 9.6 1.89 8.6 0.61%* 0.89 1.05
0.50 2.14 1.45 1.7 7.1 5.7 0.73 7.4 0.26* 0.36 0.44
0.75 0.51 0.69 0.9 3.7 3.5 0.48 4 0.17* 0.23 0.27

5 Conclusion

This paper aims to present a modified version of GA. Extracted information
about the variables likely to appear in the best solutions are used to guide
the search process of GA. The approach called Genetic Algorithm Guided
by Pretreatment information (GAGP) begins by analysing the problem data
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using a gradient greedy sorting method which sorts the variables according to
an efficiency value expressed by profit and cost. These information are used
to drive the GA search process by its integration in the generation of the
initial population and for measuring the fitness function. Some experiments
were conducted using a set of well-known MKPO01 data. It has been shown that
the information improves the performance of GA. The pretreatment allows to
reduce the size of the problem to only the most relevant space of solutions, this
allows the search process to avoid the areas of worst solutions. In addition, the
results obtained in the resolution of MKPO1 are competitive. As prospects for
the next step, we expect to apply the method to other optimisation problems.
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Abstract. We consider the fuzzy job shop, a job shop scheduling problem with uncertain
processing times modelled as triangular fuzzy numbers. While the usual approaches to solving
this problem involve adapting existing metaheuristics to the fuzzy setting, we propose instead
to follow the framework of simheuristics from stochastic optimisation. More precisely, we
integrate the simulation of possible realisations of the fuzzy problem with a genetic algorithm
that solves the deterministic job shop. We test the resulting method, simGA, on a testbed
of 23 benchmark instances and obtain results that suggest that this is a promising approach
to solving problems with uncertainty by means of metaheuristics.

1 Introduction

Scheduling is with no doubt a research field of great importance, involving complex combinato-
rial constraint-satisfaction and optimisation problems and with relevant applications in industry,
finance, welfare, education, etc [1,2]. In particular, the job shop problem in its numerous variants
is a model for many real problems which has posed and still poses a challenge to the research
community due to its complexity. It is this complexity that has led many researchers to resort to
metaheuristic techniques in order to find approximate good solutions for the problem, as is the
case with many hard optimisation problems [3,4].

Traditionally, it has been assumed that problems are static and certain: all the variables in
the problem are precisely known in advance and do not change as the solution is being executed.
However, for many real-world scheduling problems design variables are subject to perturbations or
changes, causing optimal solutions to the original deterministic problem to be of little or no use
in practice. This has motivated an increasing effort to take incorporate uncertainty and variability
in the scheduling model, in order to find useful solutions and bridge the gap between theory and
practice.

A source of changes in scheduling problems is the uncertainty in activity durations. There
exists great diversity of approaches to dealing with this kind of uncertainty [5]. Perhaps the best-
known is stochastic scheduling [1], although fuzzy sets and possibility theory provide an interesting
alternative, with a tradeoff between the expressive power of probability and their associated com-
putational complexity and knowledge demands [6, 7]. In the particular case of the job shop, there
are numerous research papers where uncertain durations are modelled as fuzzy numbers, mostly
triangular fuzzy numbers. These range from the seminal papers [8-10] to the most recent [11,12]
to mention but a few. An extensive review of the different proposals can be found in [13], which
highlights the relevance of this topic.

So far, most methods used for solving the fuzzy job shop consist in adapting existing meta-
heuristics to the fuzzy setting. This is not without considerable effort, given the added complexity
that results from handling and propagating uncertain information. It is also necessary in some
cases to approximate certain operations for the sake of computational tractability, causing dif-
ferent models and approximation criteria to co-exist in the literature. An alternative would be
to use an approach based on simulations, following the methodology for dealing with stochastic
combinatorial optimisation problems known as “Simheuristics”.

Simheuristics constitute a methodology that allows for extending metaheuristics through simu-
lation to solve stochastic combinatorial optimisation problems [14]. The underlying idea is to handle
real-life uncertainty by integrating simulation (in any of its variants) into a metaheuristic-driven
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framework. This approach takes the stance that there exist efficient metaheuristic for determinis-
tic versions of a combinatorial optimisation problem and, in scenarios with moderate uncertainty,
high-quality solutions for the deterministic version of the problem might as well be of high quality
in the corresponding uncertain setting.

All the above motivates this work, where we propose to adopt the simheuristics framework
to solve the fuzzy job shop problem. The remaining of this paper is organised as follows: after
describing in Section 2 the fuzzy job shop problem, Section 3 presents our proposal to solve the
problem using a genetic algorithm (GA) to solve a deterministic counterpart of the problem com-
bined with simulations. Finally, Section 4 presents some experimental results to assess the proposal
and Section 5 presents some conclusions and ideas for future work.

2  Fuzzy Job Shop Problem

The job shop scheduling problem, also denoted JSP, consists in scheduling a set of jobs {J1, ..., J,}
on a set of physical resources or machines {Mj, ..., M,,}, subject to a set of constraints. There
are precedence constraints, so each job J;, i = 1,...,n, consists of m tasks {6;1,...,0;m} to be
sequentially scheduled. Also, there are capacity constraints, whereby each task 6;; requires the
uninterrupted and exclusive use of one of the machines for its whole processing time. A solution
to this problem is a schedule (an allocation of starting times for all tasks) which, besides being
feasible, in the sense that precedence and capacity constraints hold, is optimal according to some
criteria, for instance, that the makespan is minimal or its robustness is maximal.

2.1 Uncertain Durations

In real-life applications, it is often the case that the exact duration of a task, i.e. the time it takes
to be processed, is not known in advance, and only some uncertain knowledge is available. Such
knowledge can be modelled using a triangular fuzzy number or TFN, given by an interval [a', a®] of
possible values and a modal value a? in it. For a TEN A, denoted A = (a', a?,a?), the membership
function takes the following triangular shape:

1
-t ol <z<a®
_ 43
palz) =4 &4 a’®<xr<a’ (1)
0 rx<aora® <z

In the job shop, we essentially need two operations on fuzzy numbers, the sum and the maximum,
which should extend the corresponding operations on real numbers using the Ezxtension Principle.
While it is straightforward to extend the sum in this manner, computing the maximum can become
cumbersome and, most importantly, the set of TFNs is not closed under the resulting operation.
For the sake of simplicity and tractability of numerical calculations, it is usual to approximate
the maximum by a TFN which is relatively easy to compute, although there is no total consensus
among authors on which approximation should be used. Another issue that must be taken into
account is that no natural total ordering exists in the set of TFNs, making it necessary to adopt
a ranking method to compare different makespan values. Which ranking method should be chosen
is a controversial matter, with several proposals co-existing in the literature [13,15].

Finally, the membership function of a fuzzy number can be interpreted as a possibility distri-
bution on the real numbers, which allows to define its expected value [16]. It also constitutes an
alternative view of the TFN as an upper envelope encoding a family of probability distributions
[6], providing a framework to select a probability distribution consistent with the TFN (an essen-
tial step in the simheuristics approach). In particular, we will consider the uniform probability
distribution that is bounded by the support of the TFN. This transformation is motivated by sev-
eral results from the literature (see [17,18]) that justify the use of TFNs as fuzzy counterparts to
uniform probability distributions and model-free approximations of probability distributions with
bounded support.
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2.2 Fuzzy schedules

A fuzzy schedule does not provide exact starting times for each task. Instead, it gives a fuzzy
interval (a TFN) of possible values for each starting time, provided that tasks are executed in the
order determined by the schedule. In fact, it is impossible to predict what the exact time-schedule
will be, because it depends on the realisation of the task’s durations, which is not known yet. It
is however possible —provided the right choice for TEN arithmetic approximations is made— to
guarantee that for each possible configuration of task durations, the starting and completion times
and the makespan of the executed schedule will lie in the corresponding fuzzy intervals. These
fuzzy times also provide information on which starting and completion times are more likely to
occur.

This is the basis for the semantics for fuzzy schedules proposed in [19] by which solutions to
the fuzzy job shop should be understood as a-priori solutions, also called baseline or predictive
schedules in the literature [5]. When tasks are executed according to the ordering provided by the
fuzzy schedule we shall know their real duration and, hence, obtain a real (executed) schedule, the
a-posteriori solution with deterministic times. Clearly, it is desirable that a fuzzy solution yields
reasonably good executed schedules at the moment of its practical use.

3 A Simulated Genetic Algorithm for the FJSP

According to the semantics of fuzzy schedules described above, a solution to the FJSP provides an
order for task execution together with estimates of the starting and completion times of all tasks.
Alternatively, the task ordering could be obtained by solving a deterministic counterpart of the
problem (with identical precedence and resource constraints but deterministic durations). In both
cases, the actual performance of a given task ordering once it is executed will depend on the exact
realisation of each task’s duration. If the assumption of simheuristics is right, in scenarios with
moderate uncertainty, orderings of high-quality in the deterministic setting should also result in
high quality solutions in the original uncertain setting.

This is the idea underlying our proposal: solve a deterministic counterpart of a given FJSP
instance using a metaheuristic from the literature (a genetic algorithm, GA, in our case) and
evaluate the obtained solution in the fuzzy setting. To this end, we simulate different configurations
for task durations, so each simulation provides a deterministic instance of JSP. The task ordering
provided by the GA can be applied to this deterministic instance, simulating the execution of a
schedule with a deterministic makespan value. The average makespan across a set of simulations
will allow to assess the actual quality of the solution provided by the GA.

The general scheme of our simulated algorithm, called simGA in the following, is inspired by
the scheme for simheurists from [14] and can be seen in Figure 1. Given an instance of FJSP, its
deterministic counterpart is obtained via defuzzification, substituting every uncertain duration by
its expected value. The resulting deterministic JSP is then solved with a GA. In fact, the GA is
run several times. Each run of the GA provides us with a feasible solution to the deterministic
problem. This solution will be included in a pool of solutions if it satisfies an acceptance criterion
that compares the solution’s fitness, i.e., the deterministic makespan, to the fitness of the solutions
(if any) previously generated and already in the pool. If the obtained solution is accepted, its
quality as solution to the original fuzzy problem is estimated by its average performance across
a small set of deterministic instances that represent possible realisations of the FJSP, obtained
after a fast simulation process. The process iterates until a finishing condition is met (here, after
MAXRUNS runs of the GA), providing us with a set of “accepted” solutions. with a fast estimate of
their performance in the fuzzy setting. These accepted solutions are then ranked according to their
estimated performance in the fuzzy setting and filtered (in our case, we keep only the MAXELITE
best solutions). For this set of filtered elite solutions we refine the estimated performance by testing
them on a larger set of simulated instances (obtained after a more intensive simulation process).
Solutions are then re-ranked according to their updated performance, thus obtaining an ordered
set of elite solutions to the FJSP.

As solving method for the deterministic JSP we use a standard GA with chromosomes codified
as permutations with repetitions [20]. This GA has already been adapted to the fuzzy problem
in [21]. Also, in combination with a local search procedure, it constitutes a state-of-the-art method
for the FJSP [22].
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Fig. 1. General scheme of simGA.

52

sciencesconf.org:meta2016:110472



Once a solution is obtained by the GA, it is accepted depending on how it compares to the best
solution accepted so far in terms of makespan. If the new solution improves the best solution, it is
accepted, but it can also be accepted if it is only worse by €%, where € is an acceptance parameter.

To simulate possible realisations of the FJSP we generate a real duration for each tasks following
a probability distribution that is consistent with the possibility distribution defined by its fuzzy
duration. Such probability distribution is obtained by applying the pignistic transformation as
proposed in [23] based on the work on possibility-probability transformations from [24]. Each
simulation provides an instance of deterministic JSP where a solution can be tested. Indeed, the
task ordering established by that solution serves as a priority vector in an appending schedule
generation scheme [25,26], so each task is scheduled at the earliest possible time after all its
predecessors both in its job and its machine, where all starting and completion times are calculated
according to the simulated durations. Hence, the same ordering results in different makespan values
across all simulations; the average is used as an estimate of the solution’s performance.

4 Experimental Results

To test the proposed algorithm, simGA, we present some experiments on 23 benchmark instances
for the FJSP from [15]. These are instances Lag29, ABZg8, ABZg9, Tap21-30 and Tag41-50, fuzzified
versions of well-known benchmarks for JSP which have been identified as challenging in [15]. We
have run simGA on these instances, as well as its fuzzy equivalent, f{GA, the GA from [21] with
the same operators than the GA in simGA, but modified where necessary to handle TFNs using
fuzzy arithmetic so it solves the fuzzy instance directly.

For both algorithms, the population size has been set to 100 individuals that evolve for 500
generations. The results below correspond to MAXRUNS=30 runs of the GA in simGA and 24
runs of f{GA. By doing so, we give fGA a total running time similar to simGA. simGA generates
10 simulated instances in the initial fast simulation and 100 instances in the intensive simulation
phase. Finally, simGA keeps MAXELITE=10 elite solutions. Accordingly, for f{GA we keep the 10
best solutions in the population according to the ranking of fuzzy makespan values.

For each problem instance, each of the 10 solutions obtained with simGA (resp. fGA) has been
tested on the 100 simulations to obtain 100 makespan values, so the average makespan across the
100 simulations is taken as a quality measure for a given solution. To compare simGA and fGA,
for each instance we have run statistical tests with a significance level of 0.05. After checking for
normality, a t-test concludes that there are no significant differences between simGA and fGA in
15 of the 23 instances, while simGA is significantly better than fGA in the other 8 instances.

To illustrate and compare the behaviour of both algorithms, Figures 2 and 3 show results
obtained with fGA and simGA on instances Tag45 and Tag46 respectively. The figures correspond
to the boxplots for the makespan values obtained on the large simulation set with the 10 best
solutions of each algorithm (fGA in pink, simGA in green). They are representative of the cases
where no significant difference exists between fGA and simGA (Figure 2) and the cases where
simGA is signicantly better than {GA (Figure 3).

More detailed results for those instances where the algorithms present statistically significant
differences can be found in Table 1. The first three columns refer to the GA that is used by simGA
on the deterministic problem obtained after substituting each fuzzy duration by its expected value.
Column “Best” contains the fitness value of the best elite solution, while column “Avg.” contains
the average fitness value across the 10 elite solutions. Notice that the fitness value is calculated on
the deterministic counterpart of the FJSP instance, i.e., assuming all durations take their expected
values, and it is the value used to guide the GA in the optimisation process and to accept (or reject)
solutions in the “Accept?” step of simGA. The third column “RD” is a count of the elite solutions
that are ranked differently depending on whether the fitness value or the simulated makespan
is used. The fourth and fifth columns show the best (“Best”) and average (“Avg.”) simulated
makespan value across the ten elite solutions provided by simGA. Finally, the last two columns
show the best and average expected makespan values of the ten best solutions obtained by fGA.
In this case, the makespan of the solutions (fuzzy schedules) is a TFN and its expected value is
used as fitness value to guide fGA in the optimisation process.

Notice that for these instaces, where simGA outperforms fGA, the expected makespan values
obtained with fGA are closer to the simulated makespan values of simGA than the deterministic
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Fig. 2. Boxplot of makespan values obtained with the 10 best solutions of f{GA and simGA on the simulation
set for instance Tap45, with no significant different between both algorithms.
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Fig. 3. Boxplot of makespan values obtained with the 10 best solutions of f{GA and simGA on the simulation
set for instance Tar46, where simGA is significantly better than fGA.

Table 1. Results on instances for which simGA and fGA are statistically different

Problem

GA

simGA

fGA

Best Avg. RD Best

Avg.

Best Avg.

Lar29
Tar24
Tar30
Tar4l
Tar42
Tar46
Tar47
Tag48

1217 1227.00
1736 1758.70
1661 1648.30
2262 2271.00
2170 2197.70
2231 2255.10
2121 2147.80
2140 2169.50

D N O O Ut O Ot

1233.48 1241.23
1760.34 1781.27
1684.83 1708.33
2277.68 2295.50
2197.64 2221.35
2256.74 2281.75
2146.74 2172.39
2164.59 2191.76

1222 1243.62
1752 1787.83
1677 1721.75
2260 2306.25
2205 2239.96
2263 2317.29
2136 2189.33
2158 2202.50
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ones from GA. In fact, the deterministic makespan values from GA are always more “optimistic”
(clearly smaller) than the simulated ones. This, together with the difference in ranking, suggests
that the simulation phase in simGA does make a difference when evaluating and selecting solutions.

5 Conclusions and Future Work

We have tackled a fuzzy scheduling problem, the fuzzy job shop, with wide presence in the literature.
The usual approach in the existing works consists in proposing metaheuristic methods that deal
with the uncertainty in the problem in order to find a solution. This is however not done without
a considerable effort, given the peculiarities of the fuzzy setting, and with little consensus on
how to handle fuzzy numbers. We have proposed instead to adopt the simheuristics framework
from stochastic optimisation, by which we handle uncertainty by integrating simulation with a
metaheuristic method (a GA) for the deterministic job shop.

The resulting algorithm, simGA ,outperforms fGA, a GA that solves directly the fuzzy problem,
in approximately 35% of the benchmark instances, with no significant difference between both
algorithms in the remaining cases.

Future work would involve improving the sim-algorithm scheme, considering alternative ways
of handling elite solutions and generating the simulations, as well as incorporating a more powerful
state-of-the-art metaheuristic to solve the JSP. It might also be interesting how the simAlgorithms
behave in terms of solution robustness, as previous works [26, 23] suggest that working directly on
the fuzzy problem results in robust solutions.
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Abstract. In this paper a new variant of the Traveling Salesman Problem namely Intermit-
tent Travelling Salesman Problem (ITSP) is presented. The ITSP originates from industrial
polishing/drilling applications where the temperature of the work piece is taken into account.
In this problem, the processing of a node must be divided into several periods and there is
a certain time lap between two consecutive periods hence the name ITSP. We present a
Mixed Integer Linear Programming (MILP) model for the problem and propose a Variable
Neighborhood Search (VNS) to solve it. The best combination of VNS components for the
ITSP is identified via experimental analysis. In addition, to understand the influence of the
instance properties on the problem difficulty, analysis on various instance sets are conducted.

1 Introduction

In industrial polishing/drilling applications, heat generated during the machining plays an impor-
tant role in the process. Consider a device, such as a laser, visiting a number of spots on a work
piece, the aim of the visit is to machine the work piece at this particular spot. The heat generated
from machining increases the temperature of the work piece locally, which might melt it down at a
certain point. Consequently, machining cannot go on for ever and at some point in time the device
has to leave the spot, to come back to continue only after a certain time lap.

Our problem consists of determining the best path to process the work piece which does not
let the temperature at any point in the work piece exceed the maximum allowed value. Due to this
temperature constraint, some spots have to be visited a number of times. In this work, we model
and solve the problem as a variant of the Traveling Salesman Problem (TSP) [1] where some nodes
have to be visited multiple times and there are time constraints between consecutive visits, hence
the name Intermittent Traveling Salesman Problem (ITSP).

TSP is a well-studied problem in the field of combinatorial optimization with several variants.
An extended review of TSP can be found in [2] [3]. However, to the best of our knowledge, the
ITSP is the first problem tackling with constraints like temperature constraints. We hereby go
through some TSP variants that appear to share some similarities to the ITSP and point out
the differences with it. The first one is the TSP with multiple visits (TSPM) [3] - where a node
must be visited a number of times. The TSPM has no time constraint between visits. The second
one is the TSP with Time Windows [4] where each node is associated with a time window. No
work in TSPTW has considered multi visits. A further scope takes us to the Inventory Routing
Problem [5], in which each node (retailer) has a periodical (e.g. daily) requirement and an inventory
capacity that should not be exceeded. The problem consists of finding the best shipping policy to
deliver a product from a common supplier to several retailers, subject to the vehicle capacity
constraints, product requirements and inventory capacities of the retailers. The shipping policy
includes deciding which vehicle to serve which retailer, when to serve and vehicle traveling paths.
Inventory constraints seem to be similar to temperature constraints. However, in the IRP, vehicle
traveling routes are within one discrete period (e.g. a day). Therefore route scheduling doesn’t
affect retailer inventory levels, in constrast with the ITSP where traveling time directly affects
node temperature.

Setting the number of visits of all nodes to 1 reduces the ITSP to a general TSP [6]. Hence,
the ITSP is NP-hard, which makes it hard to solve large instances using exact methods. In this
paper, a Mixed Integer Linear Programming (MILP) model for the ITSP are proposed. We then
present a Variable Neighborhood Search (VNS) to solve the problem. The best components of the
VNS are selected through statistical analysis of experimental results.
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The rest of the paper is organised as follows. A MILP model is given in section 2. In section 3,
a detailed description of the VNS is presented. The experimental results and analysis are reported
in section 4 and finally conclusions and future work follow in section 5.

2 MILP model

Consider a graph G = (V, E) with n nodes corresponding to n spots on the work piece. Each node
has a processing time p; > 0. Each arc (¢, j) € E has a weight ¢;; > 0 corresponding to the traveling
time from node ¢ to node j. To simplify the model, we assume that at the beginning of the process,
the temperature of each node is 0. The node temperature increases during the processing linearly,
i.e. one degree per time unit. After being processed for p seconds, the temperature of the spot is
p degrees. While not being visited, spots cool down at the rate of one degree per time unit. Each
material has a maximum temperature that must not be exceeded during the processing. We call
this maximum temperature B. Due to the temperature constraints, node ¢ with processing time
p; > B must be visited multiple times and the processing time of each visit must be smaller than
or equal to B. From now on, such nodes are mentioned as multi —visit nodes while the other nodes
are mentioned as single — visit nodes. Two virtual nodes 0 and n + 1 are created to represent the
departing depot and returning depot, ¢o; = ¢;0 = Cpt1,i = Ciny1 =0 Vie V.

Consider a set of visits @ = {1,..,m}, each visit j € @ is a continuous process without inter-
ruption and is associated with a node k € V| the model consists of the following variables:

— t; represents the time at arrival of visit j € Q.

— s, represents the processing time of visit j € @ at node k € V.

— qji, represents the temperature of node k at arrival of visit j.

— ¥,k is a binary variable, = 1 iff node k is visited during visit j, 0 otherwise.

Zjk is a binary variable, = 1 iff node k is visited during visit j and node [ is visited during

visit j + 1, 0 otherwise.

— bl and brj;, are binary variables used for linearizing the temperature constraint corresponding
to qjk-

The objective is to minimize the arrival time of the final visit. The model is as follows:

Minimize t.,

subject to
tiv1 > t; +Zsjk+zdkl * Tkl Vi #m 1)
% k.l
Z 5jk = Dk vk (2)
J
ik < B *ysn Vi, k 3)
Yk = Z Tkl Vi, k 4)
1
Yik = T 1k Vj#0,k (5)
.
Y0,0 = Ymnt+1 = 1 (6)
Jl
Jl
qor. =0 vk 9)
@j+1,6 = max{0, qjx + 2 x 555 — (tji+1 —t5)} Vi, k (10)
gik +sjk < B Vi, k (11)
e € {0,1} Vi, k, 1 (12)
Yjk € {07 1} V.jv k (13)
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where (1) represent the constraints between arriving time and traveling distance, and also play
the role of subtour elimination constraints. (2) represent the total processing time of nodes. (3) are
the linking constraints between s and y, also the upper bound constraints for the processing time
of a single visit. (4, 5) are linking constraints between = and y. (6) are constraints for the first and
final visits bound with the first and final node. (7) and (8) are flow constraints. (9) and (10) are
temperature construction constraints. (11) are maximum temperature constraints.

Since (10) are not linear constraints, the binary variables bl and br are used for linearizing the
constraints as follows:

— B x bl]k S qj+1,k S B x bljk

Vi, k (14)
— Bxbrjr < @jt1,6 — Qi — 2% Sjk +tj41 —t; < Bxbrjy

Vi, k (15)
= B (L=bljr) < qjr + 2 sj6 — (tj41 — ;) < B (1—brjx)

Vi, k (16)
brjk, bljr € {0,1} (17)

3 Variable Neighbourhood Search for the ITSP

Variable Neighborhood Search (VNS) [16] is a metaheuristic framework which is based on the
systematic change of the neighborhood during the search in order to escape from the valleys
containing local optimal. Two main components of VNS are local search and perturbation. From
the current solution, a local search procedure is utilized to get to the local optimal of the search
space valley containing it while perturbation (or shaking step) makes a big jump from this local
optimal to a far distant neighbor, hopefully to escape from the valley. The general VNS framework
can be found in figure 1.

VNS framework

Input: A set of neighborhood structures N, k = 1..., Knax
x « construct the initial solution
Repeat the following until the stopping condition is met
(1) Setk k < 1
(2) Until k = kmax repeat the following steps
(a) Shaking. Generate a point at random from the K neighborhood of x
(b) Local search. x" < Local search (x")
(c) Move or not. If x" satisfies the acceptance criteria, set x « x", and
continue the search with N, (k — 1), otherwise, set k « k + 1

Fig. 1: VNS framework [16]

In order to apply VNS for the ITSP, the following components have to be defined: initial solution
constructor, local search procedure, perturbation procedure and acceptance criterion. The initial
solution is achieved by constructing a Hamiltonian path using a Cheapest Insertion algorithm [7].
Regarding to the three remaining components, we propose different options for each of them and
aim to find the best combination for the ITSP. All components are presented in the following
subsections.

3.1 Local search
Local search exploits the search space by moving from the current solution to a close neighbor

if it satisfies some acceptance criteria. The goal of local search is to get to the local optimal of
corresponding search space valley.
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The main ingredient of local search is neighborhood move. Thanks to the similarity in TSP and
ITSP solution structures, we use neighborhood classes from TSP: 2-opt [8], 3-opt [9] [10], or-opt,
remove-and-reinsert [19]. For each class, a corresponding local search procedure is developed.

The ITSP moves are quite different from the original TSP moves. To present ITSP moves, we
firstly present the ITSP solution encoding. An ITSP solution is encoded by an ordered set of visits
Q = {1..m}. Each visit j € @ corresponds to a continuous process at a node k € V. A multi-
visit node has more than one corresponding visits in a solution. Each visit includes its position in
the solution, the corresponding node id, the processing time of this visit (s;), the temperature of
the node at the beginning of the visit (g;), the visited time (¢;) and the waiting time (w;). The
temperature constraint must be satisfied at all nodes, i.e. ¢; +s; < B Vj € Q. The objective
value of the solution is the total processing time or the visited time of the final depot.

Unlike the TSP, everytime an ITSP solution is modified, the temperature, the visited time and
the waiting time must be recalculated, which is very costly. Therefore, we propose an estimation to
check if the ITSP move is good or not before actually proceeding with the move. We illustrate this
estimation using the 2-opt move as follows. Consider the TSP 2-opt move where edges AC and BD
are replaced by AB and CD (Figure 2), the move yields benefit if cac + cge — (cap + cop) > 0.
Therefore, checking if a move is beneficial in TSP is O(1). In ITSP, due to the temperature
constraints, the temperature, visited time and waiting time of all nodes starting from A have to
be recalculated in order to check if a move yields benefit. We estimate the new objective value by
recalculating the waiting time and visited time at node C, C +1, C+2 and D, D+ 1 and D + 2
only since those nodes are most likely affected by the move. If the estimated objective value is
smaller than the original one, the move might be beneficial, we then proceed with the move and
recalculate the whole solution to get the exact objective value. A similar scheme is applied for
other moves as well.

Fig. 2: 2-opt move

After each move, we do an "ITSP post processing” as follows: if visit j has the waiting time
w; > 0, we consider moving a part of its processing time s; to other visits of the same node to
see if the total waiting time can be reduced. To speed up the process, for each node, a list of
corresponding visits is kept.

Based on those neighborhood moves, we propose two local search algorithms for VNS:

Variable Neighborhood Descent (VND) The VND local search [16] makes use of many
different neighborhoods so that they can compensate each other. For each neighborhood move,
a corresponding hill climbing local search is developed. The VND iteratively selects a neighbour
structure, calls the corresponding local search to obtain its local optimum and updates the best
solution correspondingly. The neighbour structures used in the VND are 2-opt, 3-opt, or-opt and
remove-and-reinsert,.

Late Acceptance Hill Climbing (LAHC) [17] In this strategy, a list of best solutions is
kept and in each iteration, a non-improving solution might be accepted if it is better than one
solution in the list.

3.2 Perturbation

Perturbation plays an important role in guiding the search to exploit new regions of the search
space. Starting at the local optimal given by the local search procedure, perturbation makes a big
move to get to a distant neighbor in order to escape from the corresponding valley. Therefore, in the
perturbation step, a big neighborhood move is required. We propose two strategies for perturbation
including hyperedge exchange [16] [15] and ruin-and-recreate [18].
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Ruin-and-Recreate: A Ruin-and-Recreate (R& R) move [18] includes two phases: the ruining
phase removes some nodes from the tour while the recreating phase reconnects those nodes into
the tour. The R & R for the ITSP is conducted as follows: In the ruining phase, the first node
to be removed is chosen randomly, while the other ones are chosen from the list of its closest
neighbour. Afterward, the recreating phase reinserts those nodes back into the tour using best
insertion strategy. The strength of R & R move is defined by the number of nodes being removed.
The VNS framework increases the strength of R & R move at each iteration.

Hyperedge exchange [13] An hyperedge H = (po, h) includes h consecutive edges and starts
from node pg. In hypereged exchange, two hyperedges H; = (pg, h) and Ha = (qo, h) are removed
from the tour leaving some nodes isolated. Those nodes are then reconnected to the tour randomly.
A hyperedge exchange move is illustrated in figure 3.

) %m, W p o Q0

Fig. 3: Hyperedges exchange

Guided perturbation

In the first version of hyperedge perturbation, two exchanged hyperedges are chosen randomly.
As an attempt to guide the algorithm to a promising search space, we adopt the guided perturbation
of Burke et. al. [13] to the ITSP as follows. Instead of random shaking, we exploit the information
of the current tour to guide the perturbation to promising areas. The quality of a hyperedge
H = (po,p1,..,pn) is evaluated by:

h

h—1
E :cpj7pj+1 — MNge{1,2,...,m}Cpj,q + ok E :wj
i=0 §=0

with w; is the waiting time at visit j and p is a normalizing factor.

Fig. 4: Hyperedge evaluation

The first part of the formula measures the difference between the total distance from each visit
to its successor in the hyperedge and to its closest neighbor. The large difference indicates that
there might be a chance to obtain a shorter path by destroying and re-routing that path. The
second part of the formula calculates the total waiting time along the hyperedge. In total, high
value of the meric function implies poor quality hyperedge.

In the guided perturbation, the first hyperedge is chosen randomly from the list of n/3 worst
hyperedges, n is the instance size. The second one is chosen randomly so that its first node belongs
to the list of n/4 closest neighbors of the first node of the first hyperedge.

3.3 Acceptance criteria

Acceptance criteria strategy is an important component of the VNS which controls the balance
between diversification and intensification of the search. The move from a solution to a better one
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is call "downhill move”. A search which only accepts ”downhill moves” is an intense search and
usually ends up in a local optimal. However, to diversify the search and explore potential search
space, sometimes, a worse solution than the current one is also accepted. Such move is called ”up-
hill move”. Our acceptance criteria is based on Simulated Annealing (SA) algorithm [11]. SA is
a simple yet effecient heuristic for combinatorial optimization problems, especially for TSP [12]
since it controls the trade-off between diversification and intensification efficiently. In SA’s accep-
tance criteria, "uphill moves” to solutions having higher costs are also be accepted occasionally.
This acceptance is doing under the guidance of a control parameter called the temperature. High
temperature means the algorithm is more likely to accept ”uphill moves”. By the beginning of
the algorithm, the temperature is set to a high value, which causes more ”uphill moves” to be
accepted. At each iteration, the temperature is reduced gradually, leads to less ”uphill moves” to
be accepted.

4 Experimental results and analysis

4.1 Test instances and experimental settings

The datasets used in the following experiments are generated systematically with different property
settings. An ITSP instance has three properties: size, density and bound ratio. Instance sizes are
varied based on the purpose of the test. Density property implies the proportion of multi visit
nodes in an instance. There are three density settings: I - dense, I1 - average and I1I - sparse.
In dense instances, more than 90% nodes are multi-visit, while sparse instances contain single-
visit nodes only. Bound ratio indicates the difference between maximum temperature B with the
average traveling time C between nodes. There are two bound ratio settings: RI where B = 0.5%C
and RIT where B = 4 x C. In setting RI, in which the average traveling time between nodes is
considerably smaller than the maximum temperature B, waiting time is likely to contribute for a
larger portion of total time compared to setting RII.

All algorithms are implemented in Java. The MIP model is solved by Gurobi 6.0.5 [14]. All
tests are performed on a Core i7, 2.9GHz Intel machine with 7.7 GB of RAM.

4.2 Selecting VNS best components

In this section, we investigate the VNS performance with different component combinations. De-
tailed options for two components local search (L), perturbation (P) are listed below:

— Local search: VND (L1), LAHC (L2)
— Perturbation type: VNS random (P1), VNS guided (P2), Ruin and Reinsert (P3)

The combination of the two above components forms 6 algorithms which are named by their
components. E.g. algorithm L1_P1 uses VNS random as perturbation and VND as the local search
procedure.

In this experiment, generated instances with the size of 100 nodes are used. To compare the
performances of the algorithms, we calculate the deviation from their best solutions to the solution
generated by 3-opt local search. For each instance, each algorithm is run 10 times then the average
objective value of the best solution and the time taken to achieve it are reported.

The first remark from the result (figure 5) is that algorithms using VND (L1) as local search
component perform better the ones using LAHC (L2) in general. The second remark is that the
VNS guided (P2) outperform the others perturbations. It proves that the perturbation process
makes a good use of the information of the current tour. Since L1_P2 is the best amongst those
combinations, it is used in all latter experimental investigations.

4.3 Comparision between MILP and VNS

To check how close the VNS can get to the optimal solutions, we generate a set of random instances
which size ranges from 10 to 50 nodes. Time limit for Gurobi is 800 seconds and for VNS algorithms
is 100 seconds. For MILP, the upper bounds (best incumbents) and lower bounds of optimal
solutions are reported.
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Improvement from 3-opt local search
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Fig. 5: Performance of VNS with different component combinations
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Fig. 6: Gap from Gurobi and VNS best objective solution to MIP lower bound

Figure 6 shows the gap between (a)the best solutions of VNS and (b)the best solutions of
Gurobi to the MIP lower bounds given by Gurobi. As shown in the figure, Gurobi closes the gap
for small instances only (less than 15 nodes), which is predictable. In those instances, VNS gets to
the optimal solution as well. For large instances, MIP is not able to produce good solutions. For
some instances, no solution is given (which is represented by 40% gap in the figure). In contrast,
the mean value of VNS gap is less than 5% at instances up to 45 nodes and less than 10% at
larger instances. This shows that VNS is suitable for large instances, hence is suitable for real
world applications. This also suggests that the MILP is quite good at obtaining lower bounds for
the ITSP.

4.4 Instance difficulty

In this section, we analyse the difficulty of test instances regarding to their properties as presented
in section 4.1. Since MIP can only obtain optimal solutions for small instances on which VNS close
the gap easily, in this section we perform the experiment on two datasets. On the first set containing
small instances (13 nodes), we record the time taken by Gurobi to obtain the optimal solution.
On the second set containing big instances (40 to 50 nodes), the gap between VNS best solutions
and MIP lower bounds given by Gurobi are reported. In each set, 60 instances are generated with
different density and bound ratio settings. The result of the VNS is the average of 10 runs. The
time limit for Gurobi is set as 2000 seconds in this experiment.

Figure 7 shows the comparison on different density settings. From the figure 7a we can see that
density of instance affects MIP performance significantly. In details, the more multi-visit nodes an
instance has, the more difficult it is to be solved. Especially for density setting III, which reduces
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the ITSP to the TSP, Gurobi solves all instances in less than 1 second. Similarly, the NS encounters
difficulties in closing the gap in dense instance as well (figure 7b).

Figure 8 shows the comparison regarding to the bound ratio property (the ratio between the
maximum temperature B and the average traveling time between nodes C). Solutions of instances
with RI where B = 0.5 * C have more waiting time than solutions of instances with RIT setting
where B = 4 x C. From the figure we can see that there are no significant difference in Guribo
performance at different bound ratio setting. However, VNS performance relies heavily on this

setting. The VNS performs better in setting RII.

5 Conclusion

In this paper, we presented a new variant of the TSP which raises from industrial polishing/drilling
applications where the processing of a node has to be divided into multiple visits. A MILP model
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was presented. We proposed a Variable Neighborhood Search approach with several options for each
component. Through experimental result analysis, the best combination of the VNS components
for the ITSP were identified. The experimental results showed that our algorithm can get close to
optimal values on small instances. For instances up to 70 nodes, the gap from our best solutions
to the MILP lower bounds are less than 5%. An experimental analysis on instance properties were
carried out which indicated that the density and bound ratio of instances affect the difficulty of
the problem.

Since this is a new problem, no benchmark is available currently. The building of a standard
benchmark with different instance settings and difficulty levels is necessary for further investigation
of the problem. However, to evaluate the difficulty of instances, we need a good algorithm to obtain
the optimal solutions or good lower bounds for big instances. Since the MILP presented in this
paper seems to be promising in producing good lower bounds, we plan to elaborate this approach
in the future work. Based on the result, we will build a standard benchmark for the ITSP.
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1 Introduction

The architectural simulation plays an essential role in providing performance and energetic
capability because it enables the rapid quantitative exploration of designs. The building’s behavior
simulation is an important phase in the design. It becomes valuable technique to understand and optimize
enormous challenges. It depends on the values of yearly meteorological parameters variations. The difficulty
is intensified by the fact that annual weather data are not easily available and building designers involved in
performance simulations are not the ones responsible for weather information gathering and recording.
Therefore, we need an alternative reduced weather data as “the design day”, extracted from yearly weather
information that can ensure shorter time and less complex simulation [1].

The design day is a real historical day, which reflects the natural hourly variations of meteorological
parameters [2]. We select it from a complete set of weather data for a single day chosen from the AMY
“Actual Meteorological Year” file. Theoretically, the design day is the day having the most adverse set of
weather conditions to enable the design to meet the indoor comfort criterion all over the year when
performing at their maximum capacity. It consists of 24 hourly values of climatic parameters [3].

In this work, we are aiming to select a design day in order to study the natural ventilation in a
building located in the city of Biskra, which is chosen for its representativeness of the hot and arid
environments in Algeria. It has a rigorous climate characterized by very hot, dry summer and cold winter. Its
characteristics are unfavorable for achieving thermal comfort.

In the table Table.1, we present two daily weather parameters, temperature and wind speed, from the
2015 AMY weather file, such as for each parameter, the annual maximum, minimum and average are
described. These weather parameters have an influence on the energy and ventilation performance of a
building [4]. Besides acting as control criteria in the selection of a design day, these criteria offer clues for
interventions to reduce discomfort in occupied zones.

Weather parameter Annual maximum Annual minimum Ammnual average

Temperature T [°c] 449 2.1 19.87

—_

Wind speed V[m/s] 0.6 0.1 1.87

Table .1. Annual statistics of the Biskra 2015 AMY
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The design day is selected from the 365 days in 2015. The selected design day weather file consists
of detailed data of 24 hourly values of climatic criteria parameters: temperature, wind velocity.

According to our objective, the design day is selected from the 365 days in 2015 where the selection
is based only on daily averages of temperature and wind speed parameters, thus the selected day is the day
having the maximum temperature (¢) and the maximum wind speed (ws). In this context, the problem is
defined as research, from a set of possible year days, the day (d*) that makes these two criteria in their
maximum values. To optimize (maximize) simultaneously these criteria, the multiobjective optimization
(MO) techniques are used in the problem of the design day selection.

In multiobjective optimization problems (MOP), we have two or more objective functions to be
optimized at the same time, instead of having only one. As a consequence, there is no unique solution to
multiobjective optimization problems, but instead, we are aiming to find all of the good trade-off solutions
available (the so-called Pareto optimal set). A solution x, is a Pareto optimal solution if no objective function
can be improved without worsening at least one other objective function. Such solution is not unique, and
the set of the Pareto optimal solutions are known as the Pareto front.

Several bio-inspired optimization techniques have been developed for MO problems, the most
known are genetic algorithms (AGs). The nondominated sorting genetic algorithm II “NSGA-II” [5] is the
most popular genetic algorithm for solving MOP. This algorithm can find multiple Pareto-optimal solutions
in a multi-objective optimization problem and has the following three features: It uses an elitist principle, it
uses an explicit diversity preserving mechanism, and it emphasizes non-dominated solutions.

In this paper, we have adopted NSGA-II [5] for the design day selection using two weather criteria
(temperature, wind speed) simultaneously, in order to find good compromises (or trade-offs) instead of a
single solution (global optimization). This has the advantage of providing to architects more choices at the
step of decision making.

The figure Fig. 1 illustrates, in two dimensions, the Pareto fronts in the case of the design day
selection. The design day is one of the days presented in the table Table .2.

9
7* * 8
* 7
B + 6
5 + 5
=
4t
+ 4
3 % 3
) + 2
* 1
15 20 25 30 35 40
T

Fig .1. Pareto front found by NSGA-II, in the case of the maximization of two criteria: temperature (¢) wind speed (ws).
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The day 1 2 3 4 5 6 7 8 9
(d*) 13 July 19 July 1 August 21 July 4 July 31 May 4 15 March 22 April
November
Temperature 38.21 38.1 37.24 36.49 34.59 29.38 27.19 23.81 16.1
(daily
average)
Wind speed 1.47 2.12 2.8 3.58 4.85 5.99 6.65 7.07 722
(daily
average)

Table .2. Set of the Pareto optimal solutions
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Abstract. The new functional safety standard ISO 26262 uses the concept of Automotive
Safety Integrity Levels (ASILs) to classify the strictness of safety requirements and to reduce
the risk provided by the malfunction of systems to a residual level. ASILs are five levels
(QM, A, B, C, D) from the least strict A to the most strict D where QM means no special
requirement. The main objective of the ISO 26262 is to assign the most appropriate ASILs
to the failure modes of the system in order to reduce any potential risk to an acceptable
level. But since ASILs allocation is a complex, constrained problem, it is quite hard to find
the best allocation among the huge number of possible allocations especially if it was the
case of a huge number of failure modes. In this paper, we present an experimental study that
explores the impact of the failure modes’ frequency on the stability of an ASILs allocation
problem solver. The experiments were applied to an approach that uses the Artificial Bee
Colony algorithm which is a nature inspired meta-heuristic and it explores the impact of the
failure modes’ frequency on its convergence and stability.

Mots-Clefs. Automotive Safety Integrity Levels, ABC, ISO26262, constrained
Optimization.

1 Introduction

ISO 26262 is the international standard for the functional safety in the automotive industry and
titled "Road Vehicle-Functional Safety”. ISO 26262 is applied to the safety-related systems, these
systems must comply with a safety life cycle defined in the same standard by going through an
overall process [1]. The key component of this standards is Automotive Safety Integrity Levels
(ASILs) which are five levels QM, A, B, C, D where D implies the most strict requirement while
A implies the least strict andQM means no special safety requirements. The standard introduces
an algebra concerning ASILs, and to formulate this algebra, ASILs were assigned integer values
as follows: ASIL(QM)=0, ASIL(A)=1, ASIL(B)=2, ASIL(C)=3, ASIL(D)=4 [1]. ISO 26262 uses
ASILs to classify the strictness of safety requirements to be allocated to the hazardous components
of the automotive system. The failure of these hazardous components can cause the malfunction
of the main system and subsequently represent a potential harm to the driver and road users. In
order to design and develop reliant and safe products, ISO 26262 makes sure that the risk provided
by the failure modes is reduced to a residual level. To do so, it requires a process that aims to
ensure that the most appropriate allocation is assigned to these components based on the failure
that they can provide.

The process begins with a hazard analysis to estimate any possible risk that may rise and
subsequently, identify all the possibles hazardous failure modes that may provide that risk in order
to allocate the most appropriate ASILs to those components. This allocation is based directly on the
safety goals which represent the result of the hazard analysis and risk estimation. The safety goal is
determined via a combination that gathers the probability of exposure, controllability and severity.
Exposure is the state of being in an operational situation that can be hazardous if coincident
with the failure mode under analysis[2]. Controllability is the ability to avoid a specified harm or
damage through the timely reactions of the persons involved, possibly with support from external
measures[2]. While severity is the estimation of the extent of harm to one or more individuals
that can occur in a potentially hazardous situation[2]. Throughout the hazard analysis, for each
failure mode of the automotive system, a safety goal is determined and an ASIL is assigned to that
particular failure mode according to the safety goal determined earlier.
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Assigning an ASIL to a hazard means that each failure mode that can possibly cause that
hazard is required to meet that ASIL. But this leads to a serious development cost problem, since
it would be expensive to make each component meet the highest safety requirements. To find a
way out of this situation, ISO 26262 defined and introduced ASILs decomposition. The later allows
the ASIL to be decomposed over the failure modes that provide the same hazard. The concept
of ASILs decomposition reduced the cost of developing products considerably. ASILs allocation
problem has numerous solutions that varies in safety requirements allocated to the the failure
modes and subsequently varies in costs. For these reason, ASILs allocation has merited its hard
nature and therefore it can be presented as hard combinatorial optimization problem of finding
the most appropriate ASILs allocation that comes with the highest safety requirements and the
least cost, among a set of feasible possible allocations. So finding the best ASILs allocation in a
reasonable time is quite hard, especially if the number of failure modes was huge.

In this paper, we explore the impact of failure mode’s frequency on the convergence and the
stability of an ASIL allocation problem solver(see section 7). To do so, we present an novel approach
that uses the swarm intelligence of Artificial Bee Colony (ABC) and solves the ASILs allocation
problem (see section 6). To the best of our knowledge this is the first work that explores and
presents an experimental study of the impact of different failure mode’s frequencies on an ASILs
allocation solver.

2 Background Study on ASILs Allocation Algorithms

Many contributions and techniques with different nature were proposed, to allocate ASILs to
components of the automotive system under development, techniques can be categorized into exact
solvers and search meta-heuristics. This section covers approaches which have been previously used
to solve ASILs allocation problem. Starting with the exact solvers, the contribution presented in
[3] introduces three off-the-shelf solvers to find all exact ASILs allocation solutions. Choco solver
3.2 [4] is the first solver proposed in the approach i.e. a java library for Constraint Satisfaction
Problems (CSP) and Constraints Programming (CP). The approach uses Clafer 0.3.6 [5] which is a
lightweight modeling language to improve the comprehension of the problem in the early stages of
software development. Choco 3.2 interprets ASILs allocation problem into a CSP and cooperates
with Clafer 0.3.6 to solve it using CP techniques. Developed at Microsoft, Z3 2.0 [6] is the second
solver described in the approach, where ASILs allocation problem is solved after transforming it into
Satisfeasability Modulo Theories (SMT) [7] problem. The last solver proposed in the approach was
an Integer Linear Programming (ILP) solver that uses CPLEX [8] i.e. a file format that formulates
a ASILs allocation problem in a natural, algebraic formulation, which allows the solver to read
and therefore allocate ASILs to components of the system. The next exact approach described in
[9] transforms ASILs allocation problem into a system of linear equations. The idea was to extract
constraints from Fault Tree Analysis (FTA) [10] results, and use them to build the system of linear
equations. The next step is to solve the system and there are many methods to do so, one drawback
of using any of them is that the augmented matrix of the system is not always square. To overcome
this problem, the Row Reduced Echelon Form (RREF) [11] of the augmented matrix is considered,
the system is then solved using Gauss-Jordan elimination. The exact solvers provided the exact
optimal assignments of ASILs to the components of the automotive system, however, due to the
hard nature of the problem, scalability remains an issue in large systems. Therefore researches were
directed to meta-heuristics.

In [1] a penalty based genetic algorithm is used to identify the optimal ASILs allocation. The
search starts with a population of candidate solutions, the algorithm checks the feasibility of each
candidate, and uses a penalty method to penalize the infeasible candidates. Fittest candidates
are selected to go through mutation and uniform crossover to create new offspring, the offspring
candidate is added to the population, if the new candidate is feasible and better than the current
best solution. Then the algorithm replaces the current best solution with the offspring candidate,
else the process re-starts all over again. In [12] the problem of allocating ASILs was converted
into an Integer Linear Programming (ILP) problem, where ASILs are assigned integer values,
the contribution uses a modeling framework equipped with an ILP solver. An EAST-ADL [13]
model is created by the framework and used to generate Fault Trees. The constraints extracted
from Fault Trees Analysis results and identified during the preliminary hazard analysis, are used in
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addition to the engineer preferences as an input to the ILP solver. Another search meta-heuristic is
presented in [14], where authors made use of an adopted version of Steepest Ascent Mildest Decent
method (SAMD), which is a member of Tabu Search [15] family. The algorithms starts with a
feasible solution and follows the steepest descent i.e. decrement the ASILs at each iteration until
a local minimum is reached. In this case, the mildest ascent is followed to avoid getting trapped
in the local minimum. The algorithms uses Tabu lists to prevent the search from re-visiting the
previously visited solutions and stops when a termination criteria is met. In [16] a new member
of swarm intelligence algorithms, Penguin Search Optimization Algorithm (PSOA)[17] is used to
find an economic allocation to ASILs. The algorithm employs the concept of priority classes to
assign low cost combinations a high priority. The process starts with a population of penguins,
each penguin generates a set of neighboring solutions, for each neighboring solution, the algorithm
checks it’s feasibility and calculates its fitness. If the neighboring solution is better than the current
best solution, it replaces the current best solution. The approach also uses the concept of oxygen
reserve, which increments whenever a new good solution is found, and reset to 1 otherwise, in this
case the penguin will have to explore another area of the search space.

3 ASILs Allocation Problem

ISO 26262 defines and uses the concept of ASILs to classify the strictness of safety requirements
to be allocated to the failures modes of automotive systems. According to the standard, an ASIL
is one of four levels to specify the item’s or element’s necessary requirements of ISO 26262 and
safety measures to apply for avoiding an unreasonable residual risk, with D representing the most
stringent and A the least stringent level [2]. ASILs are considered as an adaptation of Safety
Integrity Levels (SILs) that were defined and used in IEC 61058 standard (international standard
for Functional Safety of Electrical, Electronic, and Programmable Electronic (E/E/PE) Safety-
Related Systems) [18]. ASILs are five levels QM, A, B, C, D where, as previously mentioned, A
is the least strict level and D is the most strict and QM implies no special requirement. In ISO
26262 standards, an ASILs algebra is defined, and to formulate this algebra, levels from QM to
D were assigned integer values as follows: QM=0, A=1, B=2, C=3, D=4. Each ASILs has a cost
that differs on the used cost function, linear, logarithmic or experiential (See Table 1).

ASILs are assigned to the hazardous components and subsystems of the automotive system
in order to ensure that the risk is reduced to a residual level. ASILs then are allocated to these
components in a way that the highest safety requirements are guaranteed regarding the safety goal
and the risk estimation. Therefore, each of the failure components of the system will be assigned the
appropriate ASIL that fulfills the required safety. If the later is fulfilled, the risk will be reduced
to an acceptable level which is the main goal of this whole process. So can a system meet the
highest safety requirements, it would be fairly logical to assign the highest safety levels to safety
goals of each failure mode. But, doing so, leads to a serious cost problem, because higher ASILs
implies higher costs. For this purpose, ISO 26262 introduced ASILs decomposition which allows
a safety critical system to meet a particular ASIL target without all its components having to
individually meet that target[18]. Which means, ASILs decomposition allows the components that
cause the hazard by failing simultaneously together to share that hazard’s ASIL. Therefore, the
ASIL will be decomposed over these components, instead of being assigned to each of them. As an
example, consider a hazard provided by two components (C1, C2) that must meet ASIL C in order
to avoid this hazard. By virtue of ASILs decomposition concept, these two components to do not
have to meet ASIL C individually, instead, (Cy, C2) might respectively meet (ASIL A, ASIL B)
or (ASIL B, ASIL A) because 14+2=3 which is the same required ASIL. It is worth pointing that
ASIL decomposition, participates in reducing the development cost as it is shown in the previous
example, but reducing the cost still imposes a problem and researchers are still seeking for the
allocation that decreases the cost even more.

ASILs allocation can be presented and formulated as a combinatorial optimization problem
of finding the best allocation of ASILs to the hazardous components among a set of possible
allocations. The best allocation must be found in the most reasonable time and comes with the
highest safety requirements and the least development cost. ASILs allocation is then formulated
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as follows:

min f =Y C(ASIL[i]). (1)
i=1
Subject to: (Z}’L’i ASIL[j]) > kasrr 1<k<lI
ASILi,kAS[L SV ﬂASILi,k'As]L € [0,4]

where:

n: number of the hazardous events.

I: number of ASIL allocation constraints.

mk: number of hazardous events in the k** ASIL allocation constraint.
C(ASIL;): cost of the ASIL allocated to the i*" Hazardous event.
kasrr: ASIL requirement for the k** ASIL allocation constraint.

4 Solution Representation and Quality Measurement

ASILs allocation problem belongs to the combinatorial type of problems, where the number of
feasible solutions is huge and the goal is to find the optimal solution by maximizing or minimiz-
ing an objective function regarding a set of constraints. Constraints come in the form of minimal
combinations of failure modes that if appeared simultaneously may lead to a hazard; these com-
binations are known as a Minimal Cut Set (MCS) [19]. The later is extracted and computed from
Fault Trees Analysis (FTA) [10] results, using HIPHOPS (Hierarchically Performed Hazard Origin
and Propagation Studies) [19] which is a safety tool that allows the automatic FTA. Solving ASILs
allocation problem, means finding the most economic assignment of ASILs to the components of
the system that reduces the development cost, while ensuring that the safety requirements are
respected. Feasibility of the solution is determined by whether the provided ASILs allocation com-
plies with the MCSs. The fitness of the solution is computed using the cost function and it simply
equals the sum of the cost of the solution ASILs. As formerly stated, there are several cost scales,
each scale implies different cost for each ASILs as follows:

Table 1. ASIL cost functions

Cost function |QM|A| B | C D
Linear 10{20 | 30 | 40
Logarithmic 10/100{1000{10000
Experiential-I 10120 | 40 | 50
Experiential-11 5130 35 | 50

o|o|olo

As an example, consider the following feasible allocation of ASILs S to a set of hazardous
components where S = 0,0,1,0,2,1 which implies S = QM,QM, A, QM, B, A. The cost of this
allocation equals the sum of all ASILs’ costs, which is based on the chosen cost function, in this
example, the linear is applied. The cost is then calculated as follows: Cost (QM) + Cost (QM)+
Cost (A)+ Cost (QM)+ Cost (B)+ Cost (A), means 04+ 0+ 10+ 0+ 20+ 10= 40. Therefore the
cost or the fitness of this allocation is 40.

5 Artificial Bee Colony (ABC) for ASIL allocation

5.1 ABC general description

Artificial Bee Colony is a member of swarm intelligence algorithms. It is a nature inspired, population-
based, optimization meta-heuristic that mimics the behavior of real bees. The model of honey bee
swarms consists of three essential components: food sources, employed foragers and unemployed
foragers [20]. The two leading modes of behavior are the recruitment of nectar and the abandon-
ment of nectar [20].
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— Food Sources: defined by their profitability, its distance from the nest, richness, ease of
extraction.

— Employed foragers: bees associated with a food source, and employed at. They exploit the
food source to evaluate it and then carry information about this food source. This information
will be shared later with other bees with a certain probability.

— Unemployed foragers: are bees on a continuous search for a food source. There are two
types of unemployed foragers:
e Scouts: bees searching and exploring their surrounding environment for food sources ran-
domly.

e Onlookers: bees waiting in the nest to choose a food source based on the information
shared.

The most important part in the collective intelligence of bees is the exchange of information among
them. This information which represents the profitability of the food source is shared in a very
important part of the hive called ”dancing area” [20]. Employed bees share the information gathered
while exploiting the food source with the probability of profitability of that source by performing
in the dance area. The dance which is called the ”waggle dance” is performed is the dance area,
hence, the onlookers will be able to watch a lot of dances and will get the opportunity to choose
food sources. Employed foragers share their information with a probability proportional to the
profitability of the food source, and the sharing of this information through waggle dancing is
longer in duration [21]. An onlooker then can decide which food source to employ her self in.
Hence, the information circulating about the food source is proportional to its profitability and the
later is proportional to its recruitment [21]. The search process starts with unemployed bees called
”scouts”, exploring the environment randomly without any information about any food source.
When a scout finds a food source, it employs her self in that source so it will be an ”"employed” in
order to provide information about it. This information will be shared later with other bees in the
dance area through the waggle dance. Onlookers are waiting in the nest to be informed through the
waggle dance about all the possible food sources already found. The dance duration will determine
the profitability of that food source. According that, onlookers will get to decide which food source
to be recruited and which to abandon.

| Initialize ABC parameters |
|

1

| Scouts: start search |

Compute fitness and
probability

| Sortprobabilities |

High I Low

Local search Producenew
technique solutions

No ondition ‘/
met?
\ Yes

Return best
solution

Fig. 1. ABC algorithm.
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5.2 ABC for ASILs allocation

ABC has proven itself as a powerful nature inspired meta-heuristic when it comes to solve hard
optimization problems. Through this work, a novel approach that used ABC algorithm to solve
ASILs allocation is introduced. A food source represents a possible solution to the ASILs allocation
problem. Therefore, the best food source represents the optimal ASILs allocation. The search
process starts with hiring n number of artificial explorer bees called ”scouts” that aim to explore
the global search space for food sources (possible solutions). Each scout will randomly generate a
possible feasible solution to ASILs allocation problem. The feasibility of the solution is checked by
verifying the compliance of each solution with MCS. To this point, n feasible solution are generated,
each scout then will employ her self in the food source (solution) she has generated and becomes
an employee. Employees will provide information about the solution which is represented by its
fitness, and then by its probability. Each employee will calculate the fitness (cost) of her solution,
which equals the sum of the cost of ASILs allocated to the failure components of the system. This
fitness will be used to calculate the probability of each solution according to the following equation.

fit;
N .,
Zn:1 fltn

N is the number of food sources (and the number of employed bees), fit is the fitness value of the
solution ¢ which is proportional to the nectar amount of the food source in the position 1.

The solution with the best fitness (least cost) is picked and saved in the memory as "best”. After
calculating the probability of her solution, each employee will share this probability in the dance
area. The dance area will be represents via an array that contains the probabilities of all solutions
where each column corresponds to a solution. probabilities will be in a descending order. In the case
of ASILs allocation problem, the cost of a particular solution represents its profitability, therefore,
higher probabilities means lower costs. Hence, onlookers will choose p higher probability solutions,
so each onlooker will employ her self in one. The rest of the solutions will be abandoned and their
employees will be scouts and generate new random solutions. After picking the p good solutions,
onlookers will try to improve these solutions through the local search technique. Local search is
limited with a number of iterations called ”limit”. If a solution exceeds this limit without getting
improved it will be abandoned. However, if a solution, did actually got improved by the local search
and gets better than “best” it will replace it. Local search consist of creating a neighborhood of
each solution by applying some modification over it. A good solution to ASILs allocation problem
from p is firstly compared with the other good solutions. If an ASIL is present in these solutions
and not in that particular solution, it will replace another ASIL that was picked randomly in that
solution. In this case, feasibility will be checked again after the modification. The whole algorithm
will be executed a number of iteration until the optimal ASIL allocation is reached.

(2)

pi =

6 Experimentation and Results

6.1 Data Description

The contribution presented in this paper, was evaluated by simulated data, that is, a set of gener-
ated cut sets. The idea was to use a binary matrix to simulate the cut sets extracted from Fault
Tree Analysis (FTA) results, the generated matrix is made of 100 rows and 50 columns, which
means 100 cut sets and 50 failure modes respectively. The presence of a failure mode F; where
i={1,....,50} in a cut set C; where j = {1,...,100}, is represented by 1, while the absence of the
same failure mode is represented by 0. The density of failure modes i.e. the frequency of failure
modes in the cut sets is manipulated according to a probability that indicates how frequent a
failure mode in a certain number of cut sets. For more details an example is provided (see table 2).

The example shows that the cut set CS1 is an order 1 cut set with only one failure mode FM2,
the CS3 is an order 2 cut set with 2 failure modes FM1 and FM3, while the CS5 is an order 3
with 3 failure modes FM1, FM2, FM3. The density of failure modes in CS1 is 33.33%, the density
of failure modes in CS3 is 66.66% and the density of failure modes in CS5 is 100%. Once the
binary matrix is generated, the ABC algorithm inspects an appropriate assignment of ASILs that
minimizes the cost regarding safety requirements to be met, trough out 1000 iterations. Linear cost
heuristic is considered here to calculate the fitness of each allocation
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Table 2. An example of simulated data

FM1FM2|FM3
CS1| 0 1 0
CS2| 0 1 0
CS3| 1 0 1
Cs4| 1 0 0
CS5| 1 1 1
Cs6| 1 1 0

6.2 Results and Discussion

The results show that the application of our approach to the simulated data was very promising.
The density of failure modes affected both of the quality of allocation and the convergence time of
the ABC algorithm. Figure 2 shows a considerable decrease of the cost value of allocations found.
The cost was reduced from 110 to 10 when applied to ASILs 1 cut set, and from 360 to 40 when
applied to ASIL 4 cut set.

400
350
300
250

200 ——CostASIL 1

——Cost ASIL 2

Cost value

150
—— Cost ASIL 3

100

Cost ASIL 4
50

Failure modes density %

Fig. 2. Impact of failure modes frequency on the solution’s quality

Figure 2 shows a considerable decrease of the cost value of allocations found, the cost was
reduced from 110 to 10 when applied to ASILs 1 cut set, and from 360 to 40 when applied to ASIL
4 cut set.

Table 3, shows that the frequency of failure modes in a cut set of ASIL (D), has an impact on
the convergence time of the ABC algorithm, which remains under a second in each and every case.
The convergence time increases according to the density of failure modes, until it reaches the 40%
density, then it decreases until 100% density is reached. The reason behind that is the algorithm
faces a difficulty to find the best allocation with low density (from 20% to 40%), low density implies
few combinations to find the appropriate assignment of ASILs. E.g. let S = {F'1, F2,F3, F4} be a
set of failure modes of an ASIL(D) cut set, 20% density means only one failure mode out 4 failure
modes is present in the cut set , which means it can only be assigned a 4 in order to find a feasible
solution, this value may violet the cut sets which will extend the convergence time. While for 60%
density, 3 failure modes out 4 are present in the cut set, which means there are more combinations
to find feasible solution, more combinations implies low probability of cut set violation, therefore
less time is required for the ABC algorithm to converge. for 100% density 4 failure modes out of 4
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are present in the cut set, this also means that there is possible combinations to find an appropriate
allocation without violating the cut set.

Table 3. Impact of failure modes frequency on the convergence time of ABC algorithm

Density (%) 20|30 |40|50|60 70|80 |90 |100
Convergence time (MS)|387[431|575|508|435|494(386|365(357

7 Conclusion

ISO 26262 the functional safety standard in the automotive industry uses the concept of Automotive
Safety Integrity Levels (ASILs) to represent the strictness of safety requirements to be assigned to
the components of the system. ASILs allocation is a hard complex problem, and it was presented
in this work as an optimization problem of finding the most appropriate ASILs allocation to the
system’s. The best ASILs allocation must be found in the most reasonable time, fulfills the highest
safety requirements and guarantee the least development cost .In this paper, we presented an
experimental study that explores the impact of failure mode’s frequency on stability of an ASILs
allocation solver and the case study was an approach that uses the Artificial Bee Colony algorithm.
In our future work, we intend to extend the experimental study to include the other existing solvers
and explore the impact of the failure modes’ frequency on their convergence and performance.
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1 Introduction

The most real world problems are multi-objective, we have to add that many real world prob-
lems are also dynamic or continuously changing over a period. Changes may affect the object
function, the problem instance, and/or constraints. In the literature of optimization in dynamic
environments,researchers usually define optimization problems that change over time as dynamic
problems or time-dependent problems [1].

A dynamic multi-objective problem can be represented as the following multi-objective opti-
mization problem [2]. Let ¢ be the time variable,V and W be n-dimensional and M-dimensional
continuous or discrete vector spaces,g and g be two functions defining inequalities and constraint
equalities, and f be a function from V * ¢ to W. A dynamic multi-objective minimization problem
with M objectives is defined as:

{gél‘l/lf = {(fl(vat)>"-7fM(v7t)}

st g(u,t) <0,h(v,t) =0 (1)

In this work, we present a new memory-based algorithm to solve a class of dynamic multi-
objective problems. We use a copula-based estimation of distribution algorithm as a method of
optimisation to get Pareto solutions in every generation of the algorithm. The obtained estimation
model created using copulas will be utilized as a memory. We employ the memory created when a
modification occurs during the execution of the optimisation process. The proposed EDA estimate
in every generation the distribution of the best Pareto solutions obtained so far by creating a copula
that describes the dependency between those solutions. We suppose that the created copulas can be
used as a memory because they, not only save the last obtained best solutions but, save an explicit
representation of the best solutions. The generated individuals from this explicit representation
will be used as an initial population when a change occurs to the problem. We tested our proposal
on the CEC2015 [3] benchmarks and we find that our algorithm gives good results.

An Estimation of Distribution Algorithm (EDA) is a class of the evolutionary algorithms that
aims to estimate a distribution of a set of solutions usually the best ones, and use this estimation to
generate new ones in every generation. The main difference between an EDA to another optimiza-
tion algorithm is the manner of the estimation and the fashion of the algorithm implementation.

In Mathematics, a Copula is used to describe the dependencies between random variables. The
proposed Copula-based EDA helps to create the estimator of the EDA. After finding the optimal
solutions - like any classical optimization Algorithm - the generated Copula Model can be used
when a change is detected in the problem. To validate our proposal, the proposed algorithm is
performed to find the optimal solutions of a set of benchmark problems using the MOEA /D [4] as
selection method.

2 The Proposed Copula-based Estimation of Distribution Algorithms

The Estimation of Distribution Algorithms uses many ways to estimate the distribution of the best
solutions, we can find in [5] a good description of the used methods of estimation, however the use
of Copula to estimate the distribution in EDA is a very strong idea to optimize complex problems
[6-8]. We referred to copulas as "functions that join or couple multivariate distribution functions
to their one-dimensional marginal distribution functions and as distribution functions whose one-
dimensional margins are uniform.” [9]. Many types of Copula heve been applied in various research
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studies such as [10] and [11-13], in this paper, we will use an Archimedeon copula to find the best
estimation.

Algorithm 1 Dynamic Copula-based EDA

Qo < Initialization(No)

NDSetq « Sorting(Qo)

Py « SelectFromNDS(N)

t+ 1

while Not termination criteria do

if Change Detected then

C; + EstimateMarginal(P_1)
Pimp < GenerateSolutions(Cy)

9: end if

10: NDSet; + ApplyMOEAD(Pyy,,U NDSet;_1)

11: P; < SelectFromNDS(N)

12: NDSet; < Py

13: t +— t+1

14: end while

15: Return NDSet,,C

Like any evolutionary algorithm, our proposed method has two main steps; the Selection and
the Reproduction, in the first step, we use the MOEA/D to select the best solution which will
be used in the second step called the Reproduction, in this second step, the Copula is applied to
estimate, then to regenerate new individuals. When a change occurs in the problem our proposal
uses the obtained Copula model to generate individuals and use them as an initial population in
the next generation. A pseudo-code of the Estimation of distribution algorithm using a Copula for
a dynamic multi-objective problem illustrated in Algorithms 1.

3 Experimentation

To proof the efficiency of the proposed algorithm, a set of tests has been conducted using a set of
benchmarks which are usually used in this kind of problems trying to test new solving algorithms
in the area of dynamic multiobjective optimization. The work CEC2015 [3] provide a set of test
benchmarks to compare the new algorithms with the classical algorithms. We used especially FDA4,
FD5, HE2 and DMOP2 benchmarks in experimentations to proof the results given by our proposal.

4 Conclusion

In this work, we have proposed an Estimation of distribution Algorithm. The proposed algorithm
used an estimation method which is the Copula and a very famous type which is the Archimedean
one. Then we made an application of the new Copula-based EDA algorithm to solve Dynamic
Multiobjective Optimization Problems. We used the obtained Pareto Solutions Estimated Model
to generate new Pareto Solutions when the problem change. The Copula Model is viewed as a
memory that conserves the characteristics of the PS, this vision is the motivation of using this
algorithm in the Dynamic Multiobjective algorithm. A future work can be the use of the Copula
Model as a memory in class of Real World Dynamic Multiobjective optimization problems.
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1 Introduction

In this paper, we focus on the uncapacitated multiple allocation p-hub median problem (UMApHMP).
The problem is defined defined on a complete symmetric graph G = (N, E), where N = {1,2,...,n}
represents a set of nodes, while E' = {(i,7) : 4, € N} denotes a set of arcs. No capacity restrictions
on arcs (i,j) € E are imposed. Transportation cost per unit of flow on arc (i,j) € E is denoted
as cj;. For each O-D pair i — j, 4,j € N the demand ¢;; that has to be transferred from node i to
node j is given. So, UMApHMCRP consists of choosing exactly p nodes from the set N to be hubs,
where p is given in advance, so that the total transportation cost is minimized assuming that any
non-hub node may use any hub node to communicate with other nodes and the flows can be sent
and received through more than one hub (multiple allocation scheme). The transportation cost
from node i € N, assigned to hub h;, to node j € N, assigned to hub h; is calculated as:

dij = YCin; + OCh;h; + OChy g,

where parameters v, and 0 are unit rates for collection (origin-hub), transfer (hub-hub) and
distribution (hub-destination), respectively. In general, parameter « is used as a discount factor
to provide reduced unit costs on arcs between hubs, so a < v and o < §. For solving UMApHMP
many methods have been proposed in the literature (see e.g., [6] and references therein)

Most of the literature studies deal with the deterministic formulation of the problem. However, a
disadvantage of a such deterministic problem is the fact that it requires that flows to be transferred
must be known in advance. However, in practice the flow may vary during the time and thus an
optimal solution for certain realization of flow need not to be so for the another realization of flow.
For example, the flow (passengers) in the airlines transportation depends on the period of year,
holidays time and so on. The similar is also true for the postal and cargo services, i.e., the demands
may vary from day to day. Thus, the purpose of this paper is to provide a decision maker with one
possible way how to deal with the uncertainty that obviously appear in the hub networks and also
to propose an efficient way to create a solution which is robust for any realization of the flow.

1.1 Modelling uncertainity in UM ApHMP

Since in the hub networks it is unlikely that the change in flow follows certain probability dis-
tribution, from our point of view, the uncertainity will be modeled more accurately by means
of robust optimization. Hence, we model uncertainity in the following way. We assume that the
input parameters ¢;;, representing the flow to be transferred from i to j are subject to uncertainty.
Further, we assume that ¢;;, is bounded random variable with unknown distribution which takes
values from [t;; — t;;,ti; + ti;], where £;; > 0 represents a deviation from nominal coefficient value.
Without loss of generality, we may assume that t;; € [ti;,ti; + fij].

Since UMApHMP may be modelled as a mixed integer programming (MIP), where flow pa-
rameters ¢;; participate only in the objective function, in the rest of section we consider a mixed
integer programming (MIP) optimization problem in its general form:

min{cz|xr € X} (1)

and present several robust measures.
We assume that each objective coefficient in (1) may take value from the interval [c;, ¢; + dj]
and therefore we seek a solution which minimizes the maximum cost that may occur under such
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assumption. Since that it is unlikely that all coefficients will change at once, Bertsimas and Sim
[3] introduced a parameter I" which expresses the level of conservatism of the solution, i.e., the
number of coefficients that may change. Under such assumption the robustness of some solution
x € X is calculated as the maximum regret:

I = dilz; 2
G(xz, 1) {S‘Sg}”a‘}é‘ﬁf}jezg J“r]| (2)

where J = {j|d; > 0}. Now, the robust counterpart of (1) is given (according to Bertsimas and
Sim) as:
(BS_I") min{f(z,I') = cx+ G(z,IN)|z € X} (3)

Note that in the case of I' = 0, we discard the changes in the objective coefficients, unlike the case
of I' = |J|, when all possible cost deviations are considered.

The main drawback of this approach is that a decision maker obtains a solution just for a given
value of I" and in reality he/she cannot predict accurately the value of I" in advance. For example,
he/she can solve the above model for I' = Iy, but in practice I" may receive any value between 0 and
|J]. So, the question that naturally arises is whether the solution he/she obtained for the certain
value of I would be also robust solution for any realization of parameter I'. Moreover, whether
the robust solution obtained for I' = I'y > 0 will be also robust also for I' < I? Intuitively, this
is unlikely the case. So, in order to resolve this issue we propose the approach explained below.

In order to find solution that performs well regardless of the number of coefficients allowed to
change it is desirable to consider another problem

1|
(GBS_1) min{» _ f(x,I) — f(z},I)|z € X} (4)

I'=0

where z7. denotes the optimal solution of the problem (3). More precisely, the problem (GBS_1)
seeks a solution for which total sum of deviations from the optimal solution values of problems
(BS.I') is minimal. Note that in problem (4), it is not necessary to calculate in advance opti-
mal solutions of each problem {f(z}.,I")|x € X} since the problem min{Z‘lflzo (z, ]z € X}
has the same optimal solution as the problem (4). So, in what follows (GBS_1) will refer to
min{zy‘zo flz, ]z € X}.

The problem (GBS_1) may be generalized assigning the weight p(I") to each function f(z,I).
In this case, the resulting problem denoted as (GBS_p) may be stated as:

17

(GBS_p)min{ Y _ p(I)f(z, )|z € X} (5)
I'=0

In this model each weight p(I") may be interpreted as the probability that the change of I" co-
efficients will occur. Note that the model (GBS_p) includes the model (GBS_1) as a special case.
Indeed, setting p(I") = 1 for I' = Iy and 0 otherwise, the model (5) becomes min{ f(z, Ip)|z € X}.

2 Solution approaches for robust UMApHMP

The presented models are suitable for solving just small instances by using general purpose MIP
solver. So, in order to tackle large size instances we develop a basic variable neighborhood heuristic
which can be applied for robust and standard UMApHMP.

A basic variant of Variable neighborhood search (called Basic VNS) [5] consists of executing
alternately, one local search procedure (used to improve a solution) and one so-called shaking
procedure (used to hopefully resolve local minima traps) together with the neighborhood change
step. The whole process is iterated until a predefined stopping condition (e.g., maximum number
of iterations or maximum CPU time) is met.

Before providing more details of our heuristic, we describe the solution representation for
UMApHMP. Keeping in mind that once the set of hubs is known, the optimal node to hub allocation
for each origin-destination pair can be found by determining the shortest path between them via
hubs, we represent a solution of UMApHMP as a set H containing p hubs, i.e. H = {hy,ha, ..., hp}.
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The proposed Basic VNS starts the search from a solution built in a greedy manner. Namely,
the initial p hubs are chosen as those whose maximum distances from any other node are the p
smallest. More precisely, let g(h) be the maximum distance of a node h from any other node, i.e.,

g(h) = max{c;p|i € N,i # h}, h € N; (6)

Then the nodes with the p smallest values of function g are taken as the initial p hubs.
The local search used within basic VNS is based on the exploration of the neighborhood

Interchange_hub(H) = {H'|H' C N, |H' N H| =p— 1}.

This neighborhood structure contains all solutions obtained by replacing one hub from the set
H by a non-hub node. The objective function value of a resulting solution H’ is calculated from
scratch, i.e., in O(n?p) operations [1,4]. The search for an improving solution is performed using
the first improvement strategy, i.e., as soon as a better solution than the incumbent is detected, it is
accepted as the new incumbent solution and the search is resumed starting from there. Such a local
search procedure will eventually get stuck at a local minimum. Therefore, to hopefully resolve the
encountered local minima traps, a shaking procedure is used. For the input, the Shaking procedure
requires a solution H and a parameter k. At each of k subsequent iterations, the last solution H
is replaced by a randomly chosen one from its Interchange_hub neighborhood. At the end, the
solution H obtained in the kth iteration is returned as the output of our shaking procedure. The
maximum value of k is specified by parameter k,,q-

3 Computational results

The proposed Basic VNS algorithm is coded in C/C++ and executed on an Intel Core I7 with
2.8 GHz CPU and 16GB of RAM. For solving the mathematical formulations we use commercial
CPLEX 12.6 MIP solver. The CPLEX 12.6 was also run on an Intel Core 17 with 2.8 GHz CPU
and 16GB of RAM. For testing purposes the benchmark instances from the literature that are
used i.e., the CAB and AP data sets from the ORLIB library [2]. We compare solutions obtained
solving the nominal problem, the robust model based on robustness measure from [3] and the
robust model based on the robustness measure we propose in order to detect how uncertainity and
different robustness measures may affect a solution. The obtained results, as expected, confirms
that an optimal solution of the nominal problem may be very poor quality solution of a robust
problem and vice versa that an optimal solution of a robust problem may be very far from the
optimal solution of the nominal problem. In addition, the results reveal the need for the general
robust measure introduced in this paper.

4 Conclusions

In this paper we study uncapacitated multiple allocation p-hub median problem (UMApHMP)
and propose several ways how to deal with the uncertainty that may occur. More precisely, to deal
with uncertainty we use the robustness measure proposed in [3] and the robustness measure we
proposed here which generalizes the robustness measure from [3]. The main advantage, of newly
proposed measure over the previous one is that it is able to provide a solution which is robust
regardless of the maximal number of parameters allowed to change.
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Abstract. A pure Nash equilibrium is a famous concept in the field of game theory and
has a wide range of applications. In the last decade, a lot of progress has been made in
determining the computational complexity of finding equilibria in games. Deciding if a pure
Nash equilibrium exists in n-player normal form games and several subclasses has been shown
to be NP-complete. Current exact approaches are impractical and only able to solve small
instances. In this paper, we apply three local search-based metaheuristics for solving the
problem. Results on 280 randomly generated instances with different sizes show the clear
outperformance of the metaheuristic approaches over the exact method based on Mixed
Integer Linear Programming.

1 Introduction

Game theory is the study of mathematical models (games) that represent situations where multiple
rational agents (players) receive payoffs which depend on the choices (actions) they make. In most
contexts, each player strives to achieve an as high as possible payoff. Problems are modeled as games
in an effort to predict how the players will behave. There are multiple solution concepts (equilibria)
that attempt to predict this behaviour. Applications of game theory include, but are not limited to:
the modelling of psychological theories; resource allocation, networking and artificial intelligence
in computer science; competition and coexistence between species in biology and the modelling of
many economic interactions. We consider non-cooperative games in which players make decisions
independent of each other as opposed to cooperative games in which players may form coalitions
or reach consensus as to achieve the best possible outcome. Players have full information of the
game. This means that they know what actions are available to the other players and what payoff
values result from them. Computer scientists study game theory to describe the computational
complexity of computing equilibria in games.

It is possible to define a probability distribution over the actions available to a player. A set
containing one such probability distribution for each player is called a mixed strategy. The expected
payoff for a player is the payoff value a player can expect from playing the game when all players
sample actions from their distributions. A mixed strategy is called a mixed Nash equilibrium
(MNE) if no player can alter his distribution as to increase his expected payoff, assuming the other
players their distributions are held fixed.

A pure strategy is a special case of a mixed strategy. It is when all players limit themselves to
playing only one action, i.e., that action has a probability of one of being sampled. A pure strategy
is called a pure Nash equilibrium (PNE) if no player can change his action to another action as to
increase his payoff, assuming that all other players their actions are held fixed.

John Forbes Nash, Jr. showed that in each finite game, there exists at least one MNE [7, 14].
Later, it has been shown that computing a MNE is PPAD-complete [4]. Games often have no
PNE and it has been shown to be NP-complete to decide if there exists at least one [6]. PNE are
appealing, however, because they are simple to describe and execute and thus are a more plausible
explanation of how agents may behave in a game.
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For computing MNE in two-player games, as far as we are aware, there exist exact methods
[9] and local search metaheuristics [3]. For multi-player games that admit specific settings, which
includes two-player games, there exists a collection of polynomial-time approximation algorithms
[5, 16].

As far as we are aware, there exists only one exact method (other than brute force) to decide if
a PNE exists in multi-player games. It is a Mixed Integer Linear Programming (MILP) approach
[17]. Similarly to MNE, there exists a collection of polynomial-time approximation algorithms
[2, 1] for games that admit specific settings. We propose a metaheuristic approach to computing
approximate PNE for general games.

Section 2 goes over preliminaries. Section 3 describes three metaheuristic algorithms to compute
pure Nash equilibria. In section 4 we report how the algorithms perform and discuss them. We end
with concluding remarks and ideas for future work in section 5.

2 Preliminaries

We first describe a handful of definitions that are needed to understand the continuation of this pa-
per in subsection 2.1. We then describe the normal form description in subsection 2.2 by which any
game can be described by. Games described this way admit exponential size in the number of play-
ers. Lastly, we describe succinct games in subsection 2.3. These are games that can be represented
in size polynomial in the number of players and actions by using an alternative description.

2.1 Definitions

A game G = (N, S,U) is a tuple in which N represents the set of players, S represents the possible
outcomes of the game and U a set of functions for each player that maps an outcome to a payoft
value for the player.

The players are usually represented as unique integers; e.g. N = {1,2,...,n} in which n is the
number of players that participate in the game.

Each player i € N has an action set S; = {s}, s?, ..., s]"" }. It represents the choices available for
player ¢ in the game. m; is the number of available actions to player i. We denote m = max;cy m;.
An outcome is represented by s = {s1, s2, ..., S, }, in which s; € S;. The set of all possible outcomes
s is denoted by S. In other words, S = Il;c N S;.

U = {u1(s), ua(s), ..., un(s)} is the set of payoff functions. That is, functions u;(s) determining
the payoff value for player ¢ when all players choose the action proposed for them in the outcome
s. For ease of notation, u;(s) is sometimes written as u;(s;, s—;) in which s_; represents the set of
actions played by the players that are not 7. Each player strives to obtain an as high as possible
payoff value from the game.

An outcome s is called a pure Nash equilibrium (PNE) if and only if no player ¢ can improve
his payoff u;(s) by solely altering his action. Formally, s is PNE if and only if:

Vi€ N,Vs' € S;:ui(si,s_q) > ui(s,54) (1)

The number of constraints in the PNE definition is polynomial in the number of players and
actions, i.e. O(m.n). It is therefore efficiently verifiable if an outcome is a PNE or not, as aspected
from a NP-complete problem.

We say that an outcome s is an approximation of a PNE according to some value € > 0 (-PNE)
if and only if:

Vi€ N,Vs' €S 1 ui(si,5-5) > ui(s',5-) — € (2)

It is clear that if s is an e-PNE then s is a u-PNE as well, with p > e. It follows from the definition
that s is a PNE if and only if it is a 0-PNE.

2.2 Normal form games

A normal form description of a game describes the game by way of a multidimensional array. Each
dimension of the array represents a player. The size of each dimension equals the number of actions
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available to that dimension its player. Each element of the multidimensional array is an outcome
which has a payoff value for each player.

The total number of payoff values in a normal form game is exponential in the number of
players. More specifically, the number of payoff values is equal to n.[];. 5 m; or in asymptotic
notation O(m™).

As an example of a normal form game, consider table 1 that represents a game in which
N ={1,2,3}; Vie N:S; = {s},s?} and U = {uy(s),u2(s),us(s)}. The values of u;(s),uz(s) and
us(s) are represented by respectively the first, second and third value in table 1 in the relevant
outcome.

Consider the outcome s = {s1, s3, s3}. We can see that it is a pure Nash equilibrium since solely
alternating a player’s action will always lead to a worse payoff value for him/her.

1 2 1 2
S2 52 S2 852

stl(=1,-1,=1)[(2,1,2)|/(2,2,1)|(0,1,1)
s7)(1,2,2)  |(1,1,0)|/(1,0,1)[(1,1,1)

Table 1: A three player normal form game.

2.3 Succinct games

By the definition of a game, all games can be described by the normal form description. Some
games, however, can be described more efficiently using other representations.

As an example, consider a game in which players play two player games with a subset of the other
players. Such a game is called a polymatrix game and can be represented by a graph. Each node of
the graph represents a player. An edge is present between players if they play a two player game.
An edge is absent if the relevant players do not play a game. The payoff for a player in a polymatrix
game for some outcome is the sum of payoffs from each two player game the player is involved
in if the players play the action proposed by the outcome in all two player games. The number
of two player games is O(n?) and each game has O(m?) payoff values. Therefore, a polymatrix
game described by the graph description has O(n?m?) payoff values which is more efficient than
the normal form description. Games, such as polymatrix games, that admit polynomial size are
called succinct games. They are of interest to us as we can not generate non-succinct games with
a lot of players and/or actions. To see this, consider a normal form game with 10 players and 10
actions. This game will have 10! payoff values. If each payoff value is a 64 bit number, then the
game would be 800 gigabytes big! A polymatrix game with the same amount of players and actions
in which all players play games with all the other players will be 304 kilobytes big using the graph
description. If, in the polymatrix game, the number of players and actions is changed to 100, we
would still use only 792 megabytes.

For a comprehensive database of games and generators for them we refer to GAMUT [15].

3 Computing approximate Pure Nash Equilibria using local
search-based metaheuristics

We convert the problem of finding a pure Nash equilibrium into an optimization problem by
defining an objective function f:

f:S—=>R:sw— f(s)= iE]IVI}S%PéSi(Uz‘(S/, 5—i) — u;i(Si, 5-i)) (3)

The function represents the highest increase that one of the players can gain by solely switching his
action, and can be computed in polynomial time O(m.n). A solution s € S is a PNE if and only if
f(s) = 0. s is an approximation for the PNE otherwise. If f(s) is small enough, the approximation
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can prove to be useful, for example, when it would cost a lot of money and/or effort to change to
a better action while it would only lead to a very small payoff increase.

We do not intend to build powerful metaheuristics but rather show that existing, well-described
metaheuristics are a feasible method to approach the problem. We implement three local search-
based metaheuristics for solving the problem:

— Random Restart Hill Climbing (RRHC), in which Hill Climbing repeatedly restarts from a
random solution. The First Improvement strategy, which accepts the first improved solution in
the neighborhood, is used inside the Hill Climbing. Pseudo-code of the algorithm is presented
in Algorithm 1

— Simulated Annealing (SA) [8]: we implement a basic version of SA that allows reheating.
The initial temperature is set as 2000. After ¢;epng:n algorithm iterations, the temperature is
decreased by a factor of a. When the temperature reaches a lower bound of €, it is reset back to
the initial temperature. In this work, we set tjengin = 100, o = 0.9 and € = 10~6. Pseudo-code
of the algorithm is presented in Algorithm 2.

— Chained Local Optimization (CLO) [12]: this algorithm is a combination idea of Simulated
Annealing and Local Search. The algorithm resembles the Iterated Local Search framework [11]
with the Hill Climbing algorithm as the local search component and the acceptance criteria
taken from the Simulated Annealing. Algorithm 3 shows the pseudo-code of the algorithm
implemented in this paper. Values of SA’s parameters are the same as the SA described above.

All metaheuristics use the same neighborhood structure. The neighborhood 7 (s) of an outcome
s is the set of all outcomes in which at most k players altered their action. The size of a neighborhood
is then O(m"). The parameter k is set differently among the three metaheuristics: k = 1 for the
Hill Climbing component inside RRHC and CLO, k = 3 for SA and the step of generating a
random neighbor solution in the while loop of CLO. The initial solutions used are random. That
is, a random action for each player. The algorithms also share the same stopping criteria: either
when a maximum running time limit is reached or when a PNE has been found.

Algorithm 1 Random Restart Hill Climbing

Require: Game G = (N, S,U), desired amount of running time 7.
s < random outcome € S.
best < hillClimbing(s)
while time elapsed < T do
s < hillClimbing(random outcome € S)
if s is PNE then
return s
end if
if f(s) < f(best) then
best < s
end if
end while
return best

4 Results

In this section, the performance of the three metaheuristics on different problem instance sizes is
presented. The size of a problem instance depends on two parameters: the number of players (n)
and the number of possible actions for each players (m). For each pair of n and m, we generate
ten random instances using GAMUT [15], an extensive library of different types of games and
generators for them.

We first compare the performance of the metaheuristics with the MILP method on instances
that are small enough so that MILP can solve them within a reasonable time and/or memory limit
in subsection 4.1. We then show how the metaheuristics perform on instances of succinct games
that MILP can not solve due to time and/or memory limitations in subsection 4.2.
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Algorithm 2 Simulated Annealing

Require: Game G = (N, S,U), desired running time 7', initial temperature o, decreasing factor o, tem-
perature stage length ¢jengtn, neighborhood k, approximation function f : S — R.
s « random solution € S
best + s
t <« to
while time elapsed < T do

for i = 1..ticngtn do
s’ + random solution € 7 (s)
if s’ is PNE then
return s’
end if
A f(s) — f(s)
if A <0 then
s s
if f(s') < f(best) then
best <+ s’
end if
else if random value € [0, 1] < e~ then
s+ s
end if
end for
t < at
if t <107° then
t<+ to
end if
end while
return best

Algorithm 3 Chained Local Optimization
Require: Game G = (N, S,U), desired running time 7', initial temperature o, decreasing factor o, tem-
perature stage length ¢jeng¢n, neighborhood k.
s < random solution € S
s + hillClimbing(s)
best < s
t <+ to
while time elapsed < T do
for ¢ = 1..ticngtn do
s < random solution € 7 (s)
s’ < hillClimbing(s’)
if s’ is PNE then
return s’
end if
A f(s)) = f(s)
if A <0 then
54+ s
if f(s") < f(best) then
best «+ s’
end if
else if random value € [0,1] < e~ 7 then
54+ s
end if
end for
t <+ at
if t <107% then
t < to
end if
end while
return best
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4.1 Comparison of the metaheuristics with a Mixed Integer Linear Programming
approach

We first compare the metaheuristics with the exact method based on Mixed Integer Linear Pro-
gramming (MILP) proposed in [17]. To the best of our knowledge, this MILP is the only method
(except brute-force) that exists in the literature to solve the pure Nash equilibrium problem in
normal form games. The comparison is done on a dataset of 28 problem instance sizes, leading
to a total number of 280 instances. The payoff values are randomly selected from the range of
[—100, 100]. Therefore, the objective function f (3) value belongs to the range of [0, 200].

In this experiment, we set a maximum running time limit of 60 seconds for the metaheuristics.
For the MILP, we use CPLEX 12.6 with the limits of 4GB memory and one hour of running
time. Results are shown in Table 2. For each instance size, we report the number of instances in
which a PNE has been found and the average running time (in milliseconds) for finding a PNE.
For instances where a PNE has not been found, we normalize the objective function values of the
approximate solutions returned by the metaheuristics to the range of [0,1] and report the mean
over those instances. Additionally, the number of instances that the MILP can not solve within
the given memory and time limits are also presented.

We can see the clear outperformance of the metaheuristic approaches over the MILP:

— For problem sizes whose every instance is solvable by the MILP, a PNE is always found by the
metaheuristic for every instance that has at least one PNE. Moreover, the time required by
the metaheuristics to find a PNE is smaller with an order of magnitude when compared to the
MILP. For instances where a PNE does not exist, the small objective function values given by
the metaheuristics suggest good approximate PNEs. In fact, since the values returned by all
the metaheuristics for each instance are exactly the same (except the last problem size with
n =9 and m = 5), we suspect that these approximate solutions are actually the optimal ones,
although we can not prove this.

— For problem sizes with n > 5 and m < 7 (except the case where n = 7 and m = 3), the
MILP runs out of either memory or time in most instances. Those are the cases where the

metaheuristics are dominant not only on the running time, but also on the ability of finding a
PNE.

4.2 Results of the metaheuristic approaches on large games

We continue by running the metaheuristics on instances with a lot of players and/or actions. As
motivated in section 2.3, we need to use instances of succinct games. We chose polymatrix games
as a succinct game. We generate 10 instances of 25 different problem sizes resulting in a total of
250 instances. In our n-player polymatrix game instances, each player plays n— 1 two-player games
with the other players. The payoff values of the two-player games are randomly selected from the
range [—100,100]. Consequently, since the payoff for a player is the sum of all payoffs he gets in
the subgame, the payoff for a player lies in the range of [100(1 — n), 100(n — 1)]. Therefore, the
objective function f (3) value belongs to the range of [0,200(n — 1)].

In this experiment, we set a maximum running time limit of 10 minutes for the metaheuristics.
For each instance size, we only report the approximations. It was only the case for n = 10, m = 10
that a few PNE had been found. Similarly to the small instances, we normalize the approximations
to the range of [0, 1]. We observed that for the largest instances, the metaheuristics did not perform
well. That is, within the time limit, not even one iteration of RRHC or CLO was finished. In other
words, both algorithms only performed Hill Climbing until the time limit was reached. We reran
some of those instances with an increased time limit of one hour but even then not one iteration
was finished.

The reported approximations in table 3 look similar to those for the small instances. While we
can say that the approximations for the small instances are good, it would be too short-sighted
to say the same about the large instances. In a game with a lot of actions, the difference between
the smallest payoff value to which a player can switch that is bigger than the current payoff and
the current payoff is generally smaller than in a game with fewer actions. Therefore, the optimal
approximation value is expected to be smaller. We suspect that the reported approximations are
no way near the optimal value, although we have no way to prove this.
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5 Conclusion and future work

The main aim of the paper is to show that existing metaheuristics are promising methods to ap-
proach the problem of finding a pure Nash equilibrium in game theory. From the experimental
results on normal form games, it is clear that the considered metaheuristics, although being im-
plemented in a quite basic and general form, perform much better than the exact MILP method
[17]. No other exact methods have been considered and there are none as far as we are aware other
than enumerating all the possible outcomes (brute-force).

For larger instance sizes, the normal form description causes the memory usage of the game
to be too big to be generated. Despite the fact that succinct games are polynomial in size in
function of the number of players and actions, the MILP approach still reduces the problem to a
linear program that is exponential in size. This means that not only the solving time of the MILP
will take exponential time, but the reduction as well. We therefore deem the MILP approach as
entirely unfit for these problem sizes. On the other hand, because our metaheuristic approaches do
not require an exponential amount of memory, we can find e-PNE in instances of succinct games
that have a lot of players and or actions.

All the problem instances and detailed results of the solving approaches used in this paper
are publicly available at https://github.com/ElgersNiels/Metaheuristic-approach-to-PNE
. We hope that it could serve as a first benchmark for applying metaheuristics on the problem of
finding a pure Nash equilibrium.

For future work, we plan to improve the current metaheuristic approaches by exploiting knowl-
edge from specific game types, such as the graph structure of polymatrix games. In that sense,
one may design game specific heuristics that could make metaheuristics more powerful. Moreover,
in the current experiments, no real intensive work has been done to tune the parameters of the
metaheuristics yet, so the application of an automated parameter tuning tool such as irace [10]
will be interesting.

A second line of future work is to improve the current benchmark dataset. It should be noted
that games generated by GAMUT are random and are not necessarily hard to find (approximate)
PNE in. It might be the case that there exist specific generator settings that produce significantly
harder problems than in the average case, which has been found in SAT community. In SAT,
there exist specific settings so that the generated propositional formula has a 50% chance to be
(un)satisfiable. These instances are shown to be the hardest to solve [13]. Perhaps such parameter
settings exist for games as well so that finding a PNE, if it exists, is hard. It might prove to be
fruitful to reduce hard SAT instances — or other hard instances of other problems — to games and
evaluating their hardness in an attempt to create benchmarks.
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Table 2: Random Normal Form Game results

alm Found Time Found (ms) Approximation |Unsolvable
RRHC|SA|CLOMILP|RRHC| SA CLO MILP |RRHC| SA | CLO MILP
3|3 6 6| 6 [§ 1.79 0.72 0.15 141.67 | 0.033 | 0.033 | 0.033 0
3| 4 8 8] 8 8 1.52 0.56 0.26 279.77 0.11 | 0.11 | 0.11 0
3|5 4 4| 4 4 3.23 0.59 0.13 3696.24 | 0.057 | 0.057 | 0.057 0
3|6 6 6| 6 6 2.60 | 0.389 0.44 2240.06 | 0.052 | 0.052 | 0.052 0
3|8 5 5| 5 5 1.05 0.39 0.57 2654.57 | 0.026 | 0.026 | 0.026 0
319 5 5| 5 5 0.58 | 1.013 0.68 8122.44 | 0.032 | 0.032 | 0.032 0
3|10] 8 8| 8 8 4.86 2.01 2.47 3731.40 | 0.011 | 0.011 | 0.011 0
3|15| 6 6| 6 6 16.34 | 5.82 12.05 1850.26 | 0.014 | 0.014 | 0.014 0
31201 5 5| 5 5 19.18 | 36.81 | 19.15 5929.46 | 0.011 | 0.011 | 0.011 0
3|125| 6 6| 6 6 67.70 | 29.78 | 133.63 | 42524.34 |0.0061|0.0061]0.0061 0
3130 3 3] 3 3 ]108.31| 55.99 | 68.93 | 49762.25 |0.0065|0.0065|0.0065 0
3|35 5 5| 5 5 [432.00| 92.37 | 285.10 |215015.91 |0.0066|0.0066|0.0066 0
3|40| 6 6| 6 6 ]670.20|173.30 | 165.02 | 324330.39 |0.0066 |0.0066|0.0066 0
3|45 7 T 7 7 1409.89|247.53 | 293.42 |469457.35 |0.0060|0.0060{0.0060 0
3150| 8 8] 8 8 1921.45|297.51 | 788.01 |818496.07 {0.0012]0.0012|0.0012 0
5 8 8] 8 8 1.92 0.82 0.51 10712.12 | 0.026 | 0.026 | 0.026 0
5|4 6 6| 6 6 2.86 7.11 0.84 10423.76 | 0.021 | 0.021 | 0.021 0
5|5 7 T 7 7 3.16 2.27 5.64 87200.74 | 0.024 | 0.024 | 0.024 0
5|6 9 91 9 9 24.38 | 16.08 | 31.87 633587 | 0.012 | 0.012 | 0.012 0
5|7 5 5| 5 4 55.80 | 129.75| 50.72 [1700474.00{ 0.23 | 0.23 | 0.23 6
5|8 6 6| 6 2 78.73 | 34.41 | 110.84 |2545067.13| 0.013 | 0.013 | 0.013 8
59| 4 |4 4 0 |[348.69 | 82.07 | 352.03 / 0.009 | 0.009 | 0.009 10
5|10 6 6| 6 0 |592.63|362.79 | 1052.44 / 0.012 | 0.012 | 0.012 10
73 9 91 9 9 10.39 | 2.62 5.26 | 313190.35 | 0.028 | 0.028 | 0.028 0
7|4 9 91 9 1 50.40 | 37.74 | 298.16 |3621348.80| 0.022 | 0.022 | 0.022 9
7|5 4 4| 4 0 |452.33|395.58 | 467.50 / 0.018 | 0.018 | 0.018 10
9|3 5 5| 5 0 57.58 | 42.95 | 45.19 / 0.015 | 0.015 | 0.015 10
9|5 7 8| 7 0 9496.63|2863.37(10015.87 / 0.015 |0.0082| 0.020 10

Table 3: Random Polymatrix Game results

Approximation
RRHC| SA | CLO
10| 10 |0.0054|0.0040|0.0040
10| 50 | 0.055 | 0.069 | 0.042
10| 100 | 0.077 | 0.10 | 0.070
10|200| 0.10 | 0.13 | 0.089
10| 500 | 0.12 | 0.17 | 0.12
10 |1000| 0.15 | 0.20 | 0.15
10 |2000|{ 0.20 | 0.21 | 0.18
50| 10 | 0.061 | 0.051 | 0.043
50| 50 | 0.093 | 0.091 | 0.080
50100 | 0.11 | 0.11 | 0.10
50 (200 | 0.12 | 0.11 | 0.11
50 (400 | 0.15 | 0.13 | 0.15
100| 10 | 0.060 | 0.054 | 0.045
100| 50 | 0.087 | 0.081 | 0.080
100{ 100 | 0.10 |0.090 | 0.099
100| 150 | 0.11 |0.096 | 0.11
100{ 200 | 0.12 | 0.10 | 0.12
200| 10 | 0.056 | 0.052 | 0.048
200| 25 | 0.067 | 0.061 | 0.063
200{ 50 | 0.078 | 0.071 | 0.076
200| 75 | 0.088 | 0.075 | 0.085
500{ 10 | 0.045 | 0.042 | 0.045
500/ 20 | 0.056 | 0.054 | 0.056
500{ 30 | 0.060 | 0.056 | 0.060
500/ 40 | 0.068 | 0.059 | 0.062
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1 Introduction

Practical optimization problems are often large constrained problems in which the generation of
feasible solutions still represent an important challenge. Population-based algorithms (e.g. genetic
algorithm) are natured-inspired methods which experience a real success when solving free opti-
mization problems[1]. Nevertheless when some decision variables are strongly linked through con-
straints, it may be very difficult to generate feasible solutions with standard evolutionary operators
(e.g crossover, mutation). The initialization of the first population might also be a brainteaser and
often rely on some random procedures. It is obvious that it is not possible to guaranty feasibility in
these conditions. Penalty factors are thus added to the fitness function to disadvantage non-feasible
solutions. Nevertheless, they are hard to define and strongly depends on the considered instance.
A large penalty factor will definitely drive solutions to the feasible decision set while a small factor
will not be enough to discriminate non-feasible solutions. Penalty factors do not solve the problem
of generating feasible solution, they only penalize non-feasible one. If the evolutionary operators
are not able to generation new valid solutions, the penalty factor will not help. In some cases, one
can also observe that a feasible solution with poor fitness can be rejected in favor of a non-feasible
one which are particularly closed to the feasible decision set. In this paper, we are going to describe
a new approach to fix this issue. This method is based on two phases. The first one consists in
ensuring a minimum rate of feasible solutions in the initial population while the second one adds
a mechanism which is triggered when feasibility falls below this rate during the evolution. The
remainder of this article is organized as follows. The next section will first describe some related
works on constraint handling in evolutionary computing. Then, the new co-evolutionary approach
will introduce as well as the decomposition scheme. Finally, we will conclude and propose some
new perspectives.

2 Constraint handling in evolutionary computing

Constraint handling is a procedure of major importance in order to determine valid solutions. Fea-
sibility is a mandatory characteristic which has to be achieve first. In this spirit, many approaches
have been developed based on two main strategies. The first one is know as Direct constraint
handling while the second one is referred as to Indirect constraint handling. A direct constraint
handling procedure aims at driving algorithms to handle only feasible solutions. Among this strat-
egy, a trivial approach consists in rejecting explicitly non-feasible solutions from populations [2].
However, this approach is worthwhile only if the ratio between non-feasible and feasible solutions
in populations is very low. Preserving approaches [3, 4] ensure that evolutionary operators generate
feasible solutions. Nevertheless, it may be hard to discover an encoding representation preserving
implicitly feasibility. Another approach deals with repairing approaches whose aim is to add a
local procedure bringing non-feasible solutions back into the feasible decision space. Repairing ap-
proach can dramatically increase the processing time. This is the reason why they are often with
a predefined rate, i.e. a percentage of the non-feasible solutions are repaired at each generation.
Then, a question remains: how these solutions should be selected? In the GENOCOP algorithm
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[5], all solutions are repaired 15 % of the time. Here the question is: What kind of distribution
should be uses? (e.g uniform, biased towards the last generation). Finally, the last approach is
based on a encoding-decoding scheme to map individuals to feasible solution. Koziel et al. in [6]
show the benefits of using such encoding-decoding approach. The only drawback is the difficulty
to find the appropriate and most efficient mapping. Indirect constraint handling approaches drive
algorithms to generate feasible solution discriminating non-feasible ones. The most obvious one is
based on penalty factors. For instance, one way to implicitly reject non-feasible solutions is to apply
a death penalty factor [7]. Death penalty factor suffers the same drawbacks as its equivalent which
explicitly remove non-feasible solutions from populations. Penalty factors aims at transforming a
constrained problem into an unconstrained one. Generally, constraints are removed while penaliz-
ing the fitness function when some are violated. Penalyzing functions have been first defined by
Courant [8]. One can distinguishes exterior and interior penalizing functions. While the first one
penalizes non-feasible solutions diverging from the feasible decision set, the second one prevent
feasible solutions to become non-feasible by leaving the feasible decision set. A static penalized
objective can be generally represented as follows: f'(x) = f(x) + P(d(x, F)). d(x, F') can be con-
sidered as a distance to the feasible region. For instance, d(x, F') could be the number of violated
constraints. The penalty function should have the following characteristics: P(0) = 0 and if for all
a and b such that a < b one has P(a) < P(b). For instance, P(z) could be equal to k - d(z, F).
Nonetheless, one has to introduce new parameters and it is often hard to find the most appropriate
ones. These optimal parameters may also change during the generations. This is the reason why
dynamic penalty functions have been introduced to clearly take into account this aspect. Gener-
ally, the number of performed generations ¢ is added to the penalty functions in this case [9,10].
A multi-stage approach has been designed as well, to iteratively handle constraints. At each stage
i, it tries to satisfy a new constraint ¢ while using a death penalty for constraints j < ¢ which
have been already satisfied for previous stages. This concept is refereed to as behavioral memory
algorithm [11,12]. To conclude with penalty factors, an adaptive algorithm [13] has been designed
to define penalty factor based on population statistics. Due to space restrictions, this section only
described the main strategies. Nevertheless, the interested authors can refer to a very detailed
survey on constraints handling in [14].

3 Co-evolutionary approach based on constraints decomposition

For some problems, the combination of specific constraints can dramatically increase problem
complexity. Finding feasible solutions can even be a hard task. As a result, it can be more interesting
to first decompose the initial problem by separating the so called coupling constraints. In this
manner, we generate k new sub-problems having less constrained domains, such that it is easier to
generate solutions which are feasible for each sub-problem. The new approach presented hereafter
aims at developing collaboration between sub-populations in order to satisfy feasibility first. This
constraint decomposition mechanism breaks the links to constraints which are difficult to satisfy all
at once. While a standard island model isolates sub-populations and uses migration, the approach
proposed in this paper authorizes two parent solutions from different sub-populations to mate.
This mechanism is less aggressive than migration and allows to bring new genetic material from
one sub-population to another (see Figure 1). In addition, sub-populations are less sensible to
destructive mutation driving to non-feasibility while preserving diversity.

4 Conclusion

In this paper, we first summarize the different handling constraints techniques existing in the
literature as well as their main drawbacks. To cope with these issues, we proposed a new co-
evolutionary approach which differs from the ones highlighted in the literature. We illustrated its
workflow and how it is supposed to overcome the problems raised by the standard approaches to
solve constrained optimization problems. We claimed that such approach is relevant when decision
variables are strongly linked through constraint so that feasibility become a first goal to achieve.
As future work, we will investigate the possibility to extend this approach to bi-level optimization
problems where an optimization problem may constraint another one.
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1 Abstract

The implementation of the Hilbert uniqueness method allows to approximate
the control that returns the considered system to rest at time T with a final
state error for exact boundary controllability of Euler-Bernoulli beam equation
when the control is the Dirichlet type.

The aim of this study is to compare the calculation of this error when the selected
points are equidistant with the error which points are chosen by Particle Swarm
Optimization(PSO)

The results show the improvement of the final error in the second case compared
to the first case.

2 Formulation of The Problem

Let T denote a given positive number and let y°(x) and y'(x) denote given
functions defined on Q2=]0,1[. Let £={0, 1}x]0,T[, Q=]0,1[x]0,T[ and (3°,y') €
L2(Q)xH2(Q).

The Exact Dirichlet boundary controllability problem for the Euler-Bernoulli
beam equation is: Find a control function v defined on X such that y satisfies:

96 sciencesconf.org:meta2016:112625



Yt + Yxxxxr = 0 n Q

y(2,0) =y°(z) ,%(2,0) =y () inQ

y(x,T) =0 ,%(x,T)=0 in 0 (1)
y(0,t) =0 ,y(1,t) =0 te[0,T]

2 (0,t) =0 5L(1,t) = v(t) te[0,T]

It is well known that state y and control function v such that (1) is satisfied
exist provided T positive [4],[5].

The proposed method in [1] has explicitly determine the control v such that y
satisfies(1)with a final state error

8y l‘i,T
J€l” = Nyt T 3acay + 1 220 2, ®)

The selected points are equidistant in the calculation of (2).

In this study, we prove that (2) can be optimized by particle swarm optimiza-
tion(PSO).

The problem that we consider is to minimize (2)by taking the same example
traited in [1].

For this, we try determine x; by PSO so that the final state error is close to
Zero.

3 Overall Description Strategy of Particle Swarm
Optimization

The particle swarm treatment[2],[3]supposes a population of individuals de-
signed as real valued vectors particles, and some iterative sequences of their
domain of adaptation must be established. It is assumed that these individu-
als have a social behavior, which implies that the ability of social conditions,
for instance, the interaction with the neighborhood, is an important process in
success-fully nding good solutions to agiven problem.

The strategy of the PSO algorithm is summarized as follows: We assume that
each agent (particle) i can be represented in a N dimension space by its current
position X; = (x;1, Zi2, ..., x;n) and its corresponding velocity

v; = (i1, Vi2, -, Vin ). Also a memory of its personal (previous) best position is
represented by p; = (pi1, pi2, ..., Din ), called (pbest), the subscript i range from 1
to s, where s indicates the size of the swarm. Commonly, each particle localizes
its best value so far(pbest) and its position and consequently identies its best
value in the group (swarm), called also(sbest) among the set of values (pbest).
The velocity and position are updated as:

k k k k k k k k
vifl = wiju;; +ery [(pbest)ij — xij] + cars [(sbest)ij — xij] (3)

k+1 _ o k+1 k
T =g T (4)
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where xf“ 7112’»“ *1 are the position and the velocity vector of particle i respectively

at iteration k+1, ¢; and ¢ are acceleration coecients for each term exclusively
situated in the range of 2- -4,w; is the inertia weight with its value that ranges
from 0.9 to 1.2, where as ry, ro are uniform random numbers between zero and
one. For more details, the double subscript in the relations (3) and (4)means
that the rst subscript is for the particle ¢ and the second one is for the dimension
B

The results are:

Norm of y power two plus norm of yt power two

o) | o)

Norm of y power two plus norm of yt power two

0.1

Final error
Final error
o
o
@

=)
=3
>

o
=3
B

o
9
N

=)

Figure 1: Equidistant points. Figure 2: Points found by PSO.

The experimental results show that the final error is improvement in this study.
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1 Introduction

In practice, the problems encountered often involve multiple objectives to be optimized simulta-
neously and also include some inevitable uncertainty that may result from unreliable information
sources. Such problems called multi-objective optimization problem (MOP) under uncertainty, be-
come nowadays one of the major challenges in decision making area. In fact, the combination of
both important aspects, namely multi-objectivity and uncertainty, leads often to dramatically in-
creasing the complexity of these problems. Otherwise, an uncertain MOP is characterized by the
necessity of generating a set of efficient solutions while considering uncertainties and their effects
in the results.

Despite the wide applicability of this kind of problems, very little research works have been
done to handle it as-is, without erasing any of their multi-objective or uncertain characteristics [6].
Unfortunately, almost all existing approaches have been often limited to transform the uncertain
MOP into one or more mono-objective problems by using for example aggregation functions [7].
Some other approaches have been focused on treating the problem in its multi-objective context
while ignoring the propagation of uncertain inputs to the objectives and obviously to the resulting
solutions [8].

All these remarks lead us to propose a new generic approach for handling any uncertain multi-
objective problem while considering uncertainty propagation through the optimization process.
Specifically, we focused on the most critical and sensitive case where uncertainty is assumed to
affect the objective functions. In addition, we suggested to use fuzzy sets in order to express the
uncertain data in a suitable and natural way [5]. The next section outlines our main contributions
to cope with the reported problem.

2 Contributions

As mentioned above, our aim is to handle MOPs with fuzzy data, in which fuzziness is expressed
by triangular fuzzy numbers and thereby propagated to the set of objective functions. First, we
have proposed a novel approach composed of three main stages:

- Definition of a new Pareto approach for ranking the generated fuzzy-valued objective functions
since the standard Pareto dominance cannot be used in our fuzzy context [2].

- Fuzzy extension of two Pareto-based evolutionary algorithms in order to enable them working
in a fuzzy space. The extended algorithms denoted E-SPEA2 and E-NSGAII integrate the
proposed Pareto dominance in their fitness assignment strategy and use refined techniques of
diversity preservation to the fuzzy context [3].

- Definition of new concepts of robustness to analyze fuzziness propagation in the optimization
process [3].

The extended algorithms were implemented with the multi-objective module of ParadisEO-
2.0 under Linux [11] and subsequently applied to solve a multi-objective variant of vehicle routing
problem (VRP) with uncertain demands [9]. To validate them, some experimental tests were finally
carried out across a set of fuzzy benchmark instances generated at random from the well-known
crisp Solomon’s benchmark [10]. In these tests, the fuzzy outcomes are approximated into exact
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forms by calculating their expected values and then qualified using two classic multi-objective
quality indicators namely, Hypervolume and Epsilon metrics.

At this level, we have obtained encouraging results, especially about the variation of extended
algorithms over all the sampled fuzzy instances and their ability to deal with fuzziness. Neverthe-
less, approximating the generated solutions to exact values may be criticised, since it reduces the
information provided by the fuzzy solutions and so affects their robustness. To this end, we have
integrated the new robustness concepts into the search process of the two previously extended algo-
rithms E-SPEA2 and E-NSGAII in order to enable them achieving robust optimal solutions. More
precisely, we have incorporated in the fuzzy dominance relations, the robustness as an additional
criterion for ranking solutions. Besides, we have followed the same previous experimental tests
based on the VRP application and fuzzy sampled instances. Thereafter, we have used Monte-Carlo
method for simulating exact "real” results. The simulations are generated randomly according to
different distributions which are coherent with fuzzy values.

Finally, by observing the generated solutions with their respectively robustness degrees, we
have deduced that they reached the desired robustness level compared to the simulated ones.

3 Conclusion

This paper proposes a novel approach for handling multi-objective problems with fuzzy data mod-
elled via triangular fuzzy numbers. The proposed approach can be efficiently used for achieving
optimal robust solutions for any MOP with fuzzy valued objectives.

As future work, we intend to extend performance indicators (i.e., Hypervolume indicator) to the
robust fuzzy context. It would also be interesting to validate the proposed approach for different
fuzzy multi-objective problems, in which fuzziness is expressed by other shapes like trapezoidal
fuzzy numbers.
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1 Introduction

In large scale optimization problems,increasing the number of evaluations to explore the search
space so as to reach the best solution does not suffice to find optimal solution. More specifically
the problematic for evolutionary algorithms (EAs) is to find and respect the balance between
intensification and exploration. For the exploration phase the measure of the diversity of population
can be used, and for the intensification phase the role of operators is fundamental. Thus, we work
on an EA which could both alternate improve the effect of those phases. EA based on a Bayesian
approach uses a set of strategies aimed at improving the speed of convergence to the global optimum
solution. During the exploration the BEA evaluates the diversity using a quality metric, here
we used the Euclidian distance. It corresponds to the decision moments on figure 1. Then for
the intensification, a strategy, chosen during the exploration, is applied during ¢ generations (
0 a number of predefined generations). Thus the BEA is an algorithm relying on a prediction
mechanism. The choice of the strategy is based on the diversity of the past populations. Indeed
the chosen strategy for the future generations is the one which maximizes the diversity of these
past populations and so improves the performance for the exploration phase.

A strategy is a couple of one crossover with one mutation. We have three crossovers and five
mutations, so fifteen strategies possible. We use the BLX-«, the discrete and the linear crossovers.
Moreover we have the Levy, Gaussian, Scramble mutations and the DE/RAND/1/BIN and the
DE/RAND/2/BIN.

Algorithm 1: Bayes based Evolutionary Algorithm BEA

Generate Randomly a population
Initialize the probability of each strategy with a given metric
while stopping criteria are not satisfied do
a. Choose the best strategy (couple of crossover and mutation) with maximum a posteriori rule after
é generations
b. Select the chromosomes
c. Apply crossover on selected parents
d. Apply mutation on the selected individual
end while
return The best solution

For each generated population from the elected strategy, others strategies (i and j here) are
applied without evaluation of the fitness of offsprings. Then, we compute the diversification of these
populations, and the probability of each population among the § present. Afterwards, based on
the assumption that the probability of choosing each strategy is independent, then, the maximum
a posteriori principle is used the predict the following strategy.

2 Results and discussions
In first, we illustrate the fact of using several strategies compared to one using one strategy to

find the optimal solution using an evolutionnary algorithm. In fig. 1, the percentage of finding the
optimal solution was studied. One can remark that when using several strategies the success rate
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Fig. 1: Illustration of the advantage of using set of strategies.

increases. In order to compare the performance of BEA, a test on six shifted and high dimensional
problems which were considered in CEC2008 special session and a competition on large scale
global optimization[l] was done. In this paper, the dimension of the problems is set to D=100,
D=500 and D=1000. All the test functions used in the following experiments are to be minimized.
More details about the definitions of problems can be found in[1]. The experiments were done to
compare 12 algorithms including the proposed approach BEA on defined problems. To have a fair
comparison, we use the same comparison strategy by the suggestions of the organizers of CEC 2008
competition. The maximum number of evaluations M AX rgs is set to 5000 x D for all algorithms.
For each test function, all algorithms are conducted over 25 runs. The average function error value
of F(x) — F(2°) where F(z°) is the global optimum of F(z) is recorded [1].

Table 1: Average Error of the 25 independent runs tested on CEC’2008 benchmark (D=100).

Algorithm fi fa fs fa fs fe
DECC 2.72e-29 5.44e+1 1.42e+2 5.33e+1 2.75e-3  2.36e-1
DECC-ML 5.72e-28 2.79e-4  1.88e+2 0.00e4+0 3.64e-3 3.38e-14
DECC-D 2.92e-29 5.24e+1 1.40e+2 5.44e+1 8.87e-4 1.22e-1
DECC-DML 4.73e-28 2.48e-4  1.92e+2 0.00e+0 7.88e-4 3.15e-14
MLCC 6.82e-14  2.52e+1 1.49e+2 4.38e-13 3.4le-14 1.11e-13
CMAES 3.19e-24  1.32e+1 4.33e+0 2.63e+2 8.88e-18 6.64e-1
EPUS-PSO 7.47e-1  1.86e+1 4.99e+03 4.7le+2 3.72e-1 2.06e+4-00
DEwSAcc 5.68E-14 8.25e+00 1.44e+02 4.38e+00 3.07e-14 1.13e-13
DMS-PSO 0.00e+0 3.65e+0 2.83e+02 1.83e+0 0.00e+0 0.00e4-0
LSEDA-gl 2.27e-13 2.21e-13 2.8le+2 1.3le+2 2.84e-14 9.78e-14
JDEdynNP-F 9.32e-14 4.29e-1  1.12e+2 5.46e-14 2.84e-14 5.68e-14
BEA 0.00e+-0 1.2288e4-0 5,0982e+1 0e+-0 0e40 1.39e-14
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Introduction

In this paper, we present an ongoing research to investigate a new work about efficient
scheduling in smart manufacturing. In fact, in the last few years [2, 3, 4] we developed several
solutions for classical manufacturing scheduling problems. We targeted in particular the
Permutation Flow Shop Problem (PFSP) to find optimal scheduling of n jobs in m machines
with a set of constraints. We used mainly high performance computing environment such as
grid computing and parallel algorithmics strategies. We hopefully, developed efficient
techniques for the PFSP and we succeeded to resolve new data instances from Taillard's [5]

benchmarks.

In this study, our objective is to move forward new topics related to smart manufacturing
problems and their new challenges i.e. the huge number of customers. These new challenges
address both big data problems and scheduling manufacturing constraints. In this context,
genetic algorithms present an interesting alternative to provide high quality solutions for the

PFSP in industrial manufacturing production.

Description of our Genetic Algorithm

Genetic Algorithm (GA) is an iterative search meta-heuristic used to generate useful and high
quality solutions to hard optimization problems that cannot be solved effectively by exact
methods [1]. It has been used to solve many different types of NP-hard problems. GA
generates solutions to handle problems using techniques inspired from natural evolution and
behavior of chromosomes within a population of individuals. It is founded on natural theories

of evolution.

The efficiency of GAs depends on many parameters, such as the size and the composition of
initial population, the selection strategy and mainly the combination of different operators like
crossover and mutation [6]. Thus, finding good solutions to NP-hard problems requires a

proper setting of genetic algorithm operators. In this work, our aim is to develop an efficient
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sequential Genetic Algorithm for the PFSP. We propose to solve the PFSP using GA based on

experimenting various combinations of its different parameters.

3 Main results

Crossover and mutation are the two most commonly used genetic search operators. Crossover
produces offspring by recombining the information from two parents. Mutation is a process

used in GAs to maintain genetic diversity by changing some randomly selected chromosomes.

Many selection strategies were presented in the literature, having different ways to compute
the selection probability. The four major types of selection schemes that we experimented in
this work are as follows: Roulette wheel Selection, Tournament Selection, Elitism and

Uniform selection.

For the experimental evaluation we used a Relative Performance, denoted RP, that is
calculated for all data instances using the following formula: RP = ———

Where Cax is makespan criterion to optimize and LB is the lower bound of the instance.

Another Metric is used to compare our results to the literature, which is the Average Relative
Performance, and denoted PRmoy. This parameter presents the average of the relative

performances of a set of 10 instances. For example, for all the 10, 50x20 instances, the RPmoy

is given by the following formula:

Where i is the rank of the instance in the dataset.

The first criterion addressed in this work is the selection method of individual from the initial

population.

Dataset

20X5 | 20X10 | 20X20 | 50X5 | 50X10 | 50X20 | 100X5 | 100X10 | 100X20

Selection Method
Uniform 0,4 1,3 0,7 0,5 15 2,6 0,2 1 2,2
Roulette wheel 0,5 1 0,7 0,5 2,3 2,9 0,2 1,2 2,6
Tournament 0,6 1,6 23 0,6 2 34 04 33 29
Elitism 0,6 1 1,3 0,7 25 3,2 0,2 11 3

TABLE I: BEST TESTED SELECTION METHODS
Table | shows different values for each set of Taillard instances, while varying

selection schemes. Best values for each set of instances are mentioned in bold.
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We can deduce from TABLE I, that the Roulette wheel selection method provides good results
only for few instances. The Elitism method is not very interesting but it is more efficient than
a tournament one. These results confirm that the uniform selection scheme is the best method
among all other ones. Therefore, in the rest of our experimental study, we will use the uniform

selection method to adjust some other parameters for the GA.

For the generating method, we tested two variant of AGs using different methods to generate
the initial population. Ran and RanNEH techniques are used in order to choose the best way
for population generation. Ran is random generating method however, RanNEH is a
combination between heuristics and random solutions. Thus, for a population composed of m
individuals, RanNEH consists on generating a single chromosome by NEH to provide good

quality of the initial population.

Based on our experimental study, the mixed population of the initial generation is generally
the best method to solve the PFSP. For selection methods, the experiments have proved the
efficiency of the uniform method of selection compared to other tested methods such as

Roulette wheel, Tournament and Elitism.

4  Conclusion

In this work, we investigated GA's paradigm in order to select appropriate operators and
parameters of the GA to solve the PFSP. We obtained promising results and we already started
working on other GA operators and parameters such as termination criteria and size of

population.
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Abstract: Scheduling the maintenances of nuclear power plants is a complex industrial problem,
formulated in 2-stage stochastic programming for the challenge EURO/ROADEF 2010 with un-
certainty on demands, production costs and capabilities. The first stage optimization concerns the
maintenance dates and refuelling decisions, whereas the second level concerns unit commitment
problems to fulfil the power demands, ensuring feasibility and cost of the first stage decisions. Our
extensions applies for the monthly reoptimisation of the maintenance planning with requirements
of stability and robustness. A MIP formulation is first investigated to model the deterministic
problem with stability requirements. The extension of the ROADEF Challenge considering uncer-
tainty on outage durations is then investigated. An approach similar to 2 stage robust optimization
gives inconsistent results, with often infeasibility cases to search robust feasible solutions. A robust
approach inspired from multi-objective optimization allows to have robustified solutions for all the
instances of the Challenge dataset. Robustness and stability issues emphasize the need of multi-
objective optimisation to schedule the maintenance of nuclear power plants, furnishing Pareto front
to support decision makers to arbitrate good compromise solutions.

Keywords: Robust Optimization, Mixed Integer Programming, Variable Neighbourhood Search,
Pareto front, EURO/ROADEF 2010 Challenge, Maintenance scheduling.

1 Introduction

This paper addresses the large-scale power plant maintenance scheduling problem, which has been
proposed for the ROADEF/EURO Challenge 2010 organized conjointly by ROADEF and EURO,
respectively the French and the European Operational Research and decision support Societies.
The problem was specified by the French utility company Electricité de France (EDF), to address
the large-scale scheduling problem of nuclear power plant outages for maintenance and refuelling.

ROADEF/EURO Challenge 2010 The ROADEF/EURO Challenge 2010 was specified by the
French utility company (EDF), to address the large-scale scheduling problem of nuclear power
plant outages for maintenance and refuelling. This gave rise to a 2-stage stochastic formulation
for the challenge, using discrete scenarios to model uncertainty. Uncertain data concern power
demands, production capacities and costs. The first stage high-level problem concerns the outages
weeks of nuclear power plants and the refuelling quantities, with scheduling constraints for out-
ages. The second stage low-level problem computes for all stochastic scenario the production plan
implied by the first stage decisions, to minimize the mean cost over all the scenarios.

State of the art ROADEF/EURO Challenge 2010 One major difficulty of the challenge is to handle
the size of the problem. The best results were obtained in [1] with frontal meta-heuristics, for an
aggressive local search. Exact methods reduced the problem to tackle the instances sizes. A first
common simplification was to aggregate the production time steps to weeks. [2] is the only exact
approach which did not aggregate the stochastic scenarios, solving a MIP relaxing only two types
of constraints by Bender’s decomposition. However, this approach was not efficient to tackle the
real size instances. [3] fixes outages decisions on the average scenario, dualizing demand coupling
constraints for a column generation procedure independent column generation sub-problems for all
units, giving the best solutions among exact methods. Several approaches used MIP or LP inside a
heuristic algorithm. Especially, [4] solves MIP models for the first level scheduling problem, without
any production variables, and production or refuelling problems as LP when first level decisions
are fixed. Heuristic methods iterating following the 2-stage structure were less efficient than [1],
like approaches [5-9,4]. We refer to [10] for a more general survey.
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Robust optimization for scheduling problems Facing the difficulty of having uncertain input data of
optimisation problems, robust optimisation as introduced in [11] aims to provide resistant solutions
of uncertainty given in a defined uncertainty set without knowing probabilistic distributions. Min-
imizing the worst case cost for all occurrence in the uncertainty set, it leads to min-max problems,
with case by case resolution. 2-stage robust optimisation was introduced in [12,13] for sequential
decision-making under uncertainty, where the decision-maker must make some strategical or tac-
tical "here and now” decisions, before discovering the actual value of some uncertain data, having
the opportunity to take further action, called recourse,in a more operational level with ”wait and
see” decisions, once uncertainty has outcome, while minimizing the worst case cost in the uncer-
tainty set. We note that it exists a wide variety of robustified approaches with different definitions
of robustness in the context of dynamic scheduling, we refer to [14] for a survey.

Paper outline This paper will provide dual bounds for the ROADEF Challenge, using MIP to
compute bounds on restricted problems, proving that the different restrictions imply dual bounds
for the whole problem. Section 2 gives an overview of the problem constraints, while section 3
presents a MIP model for the problem, relaxing only two set of constraints. To deal with smaller
problems, section 4 proves that the aggregation of production time steps gives lower bounds. Section
5 proves that we can compute dual bounds with restrictions to single scenarios. Section 6 provides
a parametric family of dual bounds, relaxing outages and aggregating constraints. Computational
results are reported in section 7 and conclusions from this research are drawn in section 8.

Constraint|Description

CT1 for all s,t, the total production is the demand Demj

CT2 Production of T1 plant j € J is in [Pmin},, Pmax;,] for s € Sand t € T
CT3 Production of T2 plants are null during an outage

CT4-5 Production of T2 plant i is in [0, Pmax;] for t € T,

CT6 Decreasing power profile at the end of nuclear cycles (relaxed)

CT12 Modulation constraints (relaxed)

CT7 bounds the refuelling of outage k of T2 plant ¢ in [Rmin; », Rmax; i)
CT8 Initial fuel stocks for T2 units have value Xi;

CcT9 Dynamic evolution fuel stocks/production for T2 units.

CT10 Fuel losses at refuelling
CT11 The fuel level is in [0, S; 1] for cycle k of T2 unit 4.
The fuel level must be lower than A, ;41 to process outage k + 1

CT13 Time windows constraints for the beginning dates of outages

CT14-18 |Minimal spacing/ maximal overlapping constraints among outages

CT19 maximal overlapping constraints among outages with resource constraints
CT20 Maximal number of simultaneous outages

CT21 Maximal power off-line

Table 1. Definition of the constraints of the challenge ROADEF

2 Problem statement
We summarize here the problem description, we refer to [15] for the challenge specifications.

Set and index Two kinds of power plants are modelled. On one hand, Type-2 (shortly T2) power
plants indexed with ¢ € Z, correspond to nuclear power plants. T2 power plants have to be shut
down for refuelling and maintenance regularly. On the other hand, Type-1 (shortly T1) power plants
are indexed with j € J, model other power plants with more flexibility in the production. Outages
and production campaigns are indexed with the cycles k& € K for all T2 plant. By convention, a cycle
begins with the outage period for maintenance and refuelling, before the production campaign.
The time horizon is discretized with two kind of homogeneous time steps. The outage decisions
are discretized weekly and indexed with w € W = [1; W], whereas t € T denotes production times
steps from 8h to 24h. D; denotes the duration of the production time steps. t,, denotes the first
production period of the week w € W, each production time step t is associated to its week w;.
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Objective function The objective function minimizes the expected cost of production while satis-
fying customer load for all time steps and all production scenarios. Production costs of T1 units j
are C3, proportional to the production levels for all scenarios s at time step ¢. Production cost of
T2 units are calculated proportionally to the fuel consumption: proportional refuelling costs C}
are considered, and reduced with the proportional cost of the remaining fuel with a proportional
factor C{ . to avoid end-of-side effects.

Constraints description Table 1 defines the constraints with their nomenclature in the challenge
specification [15]. CT1 to CT6 and CT12 are production constraints, whereas CT7 to CT11 are
stock level constraints. The remaining constraints are specific to T2 plants outage scheduling.

3 MIP formulation with stability constraints ond objective

In this section, we provide a MIP formulation for the problem, relaxing only constraints CT6
and CT12 similarly as [2]. It leads to a MIP formulation where the only binary variables are the
outages weeks decisions. A major modeling difference with [2] is in the binary variable definitions
of d; i, .o: We define d; ., = 1 if and only if the outage beginning week for unit ¢’s cycle £ is before
week w. Binary variables z; ., in [2] are equal to 1 if and only if outage beginning week for cycle
(i, k) is exactly w. Such choice allows to have efficient branching following results of [16,17]. Other
continuous variables to have a linear formulation are refuelling quantities r; ;, for each outage (i, k),
T2 power productions p; r+ s at cycle k, fuel stocks at the beginning of campaign (4, k) (resp at
!

the end) x:"k’ts, xﬁ."s, T1 power productions p; ¢ s, and fuel stock z; ,

horizon. It gives rise to the MIP formulation:

at the end of the optimizing

= min Z C krl E+ Z Cfc}gnw i,k,w T di,k,w—l) + Z ﬂ—scas’tDt DPj,s,t — Z ﬂ-Sc{,sxif,s (1)

i fow oot ivs
Vi, k,w, di gw—1 < di o (2)
Vi, k, ik, To; 1 < 0 3)

Vi, k, di k,Ta; , = 1 (4)

Vs, t, Z-kpikst+2-pjst=Demt’s (5)

Vi, s, t, Pmin}; < p;s: < Pmax;}, (6)
Vi, k, s, t, Dikosit < Pmaxl’t(dl’k,wt,DaLk —di kt1,0,) (7)
Vi, k, Rmin, 1, di pw < 11 < Rmax; i dipw (8)

Vi, s, it = Xi; 9)

Vi, k, s, w,ffg = I%’ts > D' pikss (10)
Vi, k, s, a —Boj g = Tik + Q*:l(l”{fq —Bo; x-1) (11)
Vi, k, s, w??i <Sik (12)
Vi, k, s, {Zns <A pt1+ (Sik — Aipt1)(1 = digr1,w) (13)
Vi, k, s, x{s\xﬁ"s+5( ik w — di kr1,w) (14)
Ve, w, (i myeac @ik wdigw) < By (15)
de{0,1}N r,p,x >0 (16)

(2) is required with definition of variables d. (3) and (4) model CT13 time windows constraints:
outage (4, k) is operated between weeks To; , and Ta; ;. (5) models CT1 demand constraints. (6)
models CT2 bounds on T1 production. (7) models CT3, CT4 and CT5 bounds on T2 production.
(8) models CT7 refuelling bounds, with a null refuelling when outage i,k is not operated, ie
di p,w = 0. (9) writes CT8 initial fuel stock. (10) writes CT9 fuel consumption constraints on
stock variables of cycles k z!" fzk"g (11) models CT10 fuel losses at refuelling. (12) writes CT11

i,k,s?
bounds on fuel stock levels only on variables :1:;’}6”5 which are the maximal stocks level over cycles

k. thanks to (10). (13) models CT11 min fuel stock before refuelling, these constraints are active
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for a cycle k only if the cycle is finished at the end of the optimizing horizon, ie if d; x11,w = 1,
which enforces to have disjonctive constraints where case d; j41,w = 0 implies a trivial constraints
thanks to (12). (14) is a linearizing constraints to enforce aclf,s to be the fuel stock at the end
of the time horizon. xif,s is indeed the x{lkns such that d; ,w = 1 and d;p+1,w = 0, for the
disjonctive constraints (14) that write a trivial constraints in the other cases thanks to (12), we
define S; = max;, Si k. (15) is a common framework for scheduling constraints from CT14 to CT21,

which was noticed independently in [18], [2] and [4].

Veis, w, Z (diskw = d; jw—(Day p+Se1ac14)+) < 1 (17)
(i,k)€A14°14
Veis,w € Weysy, Z (dikyw — di,k,wf(Dai,k+Se15C15)+) <1 (18)
(i,k)EA15°15
Veig, w, Z (di,keyw — dik,w—se16c16) < 1 (19)
(i,k)EA16°16
Yeir, w, Z (di k,w—Da; j, — di,k,w-Da; j,—se17e17) < 1 (20)

(i,k)EALTCLT

Veig, w, E (dijkyw — di g, w—se18e1s ) + (dik,w-Da; j, — dik,w—Da; ,—Se18e1s) < 1 (21)
(i,k)EA18°18

Veig, w, Z(i,k)eA19(di,k,w—L19;1,3 - di,k,w—Lmjl,?—Tumjlg) < Q197 (22)

Yoo, w, Z (dikyw — dik,w—Da, ;) < N203° (23)
(i,k)€A20520

Veor, w, Z Pmax;’ (di k,w — di kw—Da, ;) < Imaxy? (24)
ik

4 Uncertainty model and 2-stage robust formulation

Operations for maintenance and refuelling are very complex, scheduling a lot of tasks with different
manufacturers. Uncertainties can arise in the maintenance, which can have an impact in term of
costs and feasibility of the final solutions. Operational requirements guided to a robust management
of outage prolongations. Da; j is thus uncertain.

Uncertainty sets The originality of our robust problematic compared to [13,11] is that Da, j are
discrete, and constraints like (7) or (17) are non linear in Da, ;. This leads to consider a discrete
enumeration of scenario, we denote {2 such uncertainty set. For all 6 € {2, we denote by J; . the
outage prolongation expressed as an integer number of weeks, outage durations are now DA, ,+6; .
We denote Da, j, = maxseq Da; i, +0; 1, the maximal prolongation of outage (i, k). We assume that
Sik € [0,0: k] = ZN1[0,8;x). A first natural uncertainty set is 205t = [[; 1[0, ;%] In this case,
all the worst prolongation can be considered, which is very pessimistic. One way to reduce the
conservatism is to restrict the number of prolongations using a cardinality constraint, like in [13]:

0N {5 € Quorst|Sik < Sopei and Y, €4 < N, e € {0, l}Vz’7k}.

card —

Generic form of deterministic MIP Whatever the deterministic formulation considered following
variants of sections 4 and 5, we can write the deterministic problem with following form:

xe{o,l]g}ixrﬁw,yw cwtay (25)
Az <a (26)

Tsx+Wy<h (27)

By <b (28)

x denotes variables d; i ., et 7; 1, real decision variables, whereas y denotes second level variables
of productions and fuel stocks, only continuous variables. (26) express coupling among first level
variables, with constraints (2), (3), (4), (8) and some scheduling constraints, this will be discussed
below case by case. (27) denotes constraints duplicated for all scenario d, that couples first level to
second level variables, typically constraints (7), (6) (5), (9), (10), (13), (12) and eventually TODO.
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2 level robust scheme The problem structure is similar to 2-stage robust problems: first stage
variables x are "here and now” decisions, whereas production decisions y ”wait and see” are im-
plemented once the uncertainty is revealed. This situation is similar to game theory problems,
analogously with a fictive adversary choosing the best strategy in {2 to penalize outages prolon-
gations after the date decisions are fixed, with the possibility to adjust the production after the
choice of the adversary. It leads to the min-max-min scheme:

mi;lo cr + Q(x) with Q(z) = maxscp min, qy

z,y>

s.c: Arx <a sc:Tsx+Wy<h (29)
€ {0,1}" x RY By<b

The min-max-min choice of = is conditioned for all occurrence § € 2 by the feasibility of second
level solutions y. Otherwise, the fictive adversary would choose in his maximization a § € {2 leading
to infeasibility in y, such that Q(z) = +o0o. With such paradigm, the choice of x is based on the
best objective value after recourse on the worst case happening in the uncertainty set.

MIP Linearization To linearize the min-max-min problem, we duplicate variables y and constraints
for all scenario . It gives rise to variables ys and duplicated constraints T5 x + W ys < d. We can
also introduce a continuous variable C"°", that will be C' = maxses min ¢(&)y, thanks to constraint
(30.4). It leads to following linearization :

min cx + Cmo (30.1)
xe{O,l}”’XRQL,y(;}O
Az <a (30.2)
Vo Tsz+Wys<h  (30.3) (30)
Vo Bys <b  (30.4)
) qYs < O™ (30.5)

Such matrix structure is similar to stochastic optimization with recourse, with coupling variables
x, C"° and independent sub-problems for all scenario §. Specialized Benders reformulation is thus
naturally investigated.

Benders cuts Once first level variables C"° et 2 are fixed, the problem is restricted to feasibility
questions: for all scenarios J, do it exist a production plan yg, fulfilling the constraints with a cost
lower than C°?? We have as many feasibility questions as scenarios, independent sub-problems.
The feasibility question for constraints (27), (28) et (30.5) an d a scenario d, can be reformulated
as following optimization problem :

n* = min 7 (= —max—n)
7,45 20
Wys <nl+h-Tsa (a) (31)
Bys <nl+b (B)
qys  <n+C ()

1 is a vector filled with 1. Feasibility of (27), (28) et (30) is equivalent to n* = 0. (31) is feasible,
so using strong duality, we have:

—n* = min a.(h—Tsz) + B.b+~.C"° (32)
8,720

aW +Bb+v.q>=0 (ys) (33)

—al— Bl -1 > -1 (n) (34)

We recognize, extreme directions of cone defined by constraints (33), . The constraint matrix does
not depend on first stage decisions and on d. This allowes to reformulate (30) on x variables with
master constraints (26), and all extreme direction («, 3,7) of cone (33):

min cx + CTP (35)
2€{0,1}7 xR™,Crob >0

Az <a (36)
Y(a, B,7) a.(h — Tsz) + B.b++.C"™ > 0 (37)

Furthermore, we provided a constructive separation algorithm to generate cuts, computing (31) to
generate («, 3,7). This Benders decomposition allows to generate one cut per scenario.
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Specific case of CT14-CT15 scheduling constraints Scheduling constraints CT14-CT21 are inter-
esting to study separately, because of different structures regarding outage durations Da; j 5. CT16
constraints do not depend outage durations Da, , 5, constraints (19) can thus be written in the
master problem. The case of CT14 and CT15 is also specific, these constraints can be reformulated
with RHS uncertainty (we refer to [18,19]). The robustness us equivalent to Soyster approach, the
reformulation of [20] proves that robust CT14 and CT15 constraints are equivalent to the deter-
ministic constraints with Da, , = Diai_k, that can also be incorporated in the master problem:

(38)
(39)

Vw, Z(i,k)eAl4(di,k=w - di,k,wf(Diai,k+Se14)+) 1
1

NN

Vw € [ds, f15], Z(i,k)eAls(di,k-,w - di,k,w—(ﬁai,k+se15)+)

5 Parametric robustified formulation

For the previous formulation, feasible set of robust solution induce feasibility of solutions for all
single outage prolongation. In the case where no such robust solution exists, or have a prohibitive
cost, a lighter definition of robustness is required to have consistent robustified solutions.

MIP robustified formulation The further robustified formulation consider the impact of prolon-
gation only for the feasibility of constraints CT14 and CT15, allowing violations of robust con-
straints with a cost penalization. For all constraints ¢ € C'T'14 and ¢ € CT'15, continuous vari-
ables z((;,lf,), zﬁ}i’,) > 0 are introduced to penalize robust violations, paying cost Cpen’® for viola-

tions. This gives rise to a MIP formulation similar to the deterministic formulation, minimizing

b (14) (15) det det 1d pen
Zw CpenTO (ZC;U) + Ze,w ) + obej with obej = Zi,k C:ir,k:ri,k + Zi,k,w Ci,k,uz(di7k1w - di,kJﬂ—l) +

D Cf_rtht it — D C;’alxlfm, adding to the previous deterministic formulation the constraints:

14
Vw,c € CT14 Y pyearac(dikw = di oy (Da, p+se14)+) S 1+ 205 (40)

15
Ve € CT15,w € [di5, ff5], Z(i,k)eAlsC(di7kaw - di,k,wf(mi,kJrSels)Jr) <1+ Zg.,w) (41)

Constructive matheuristic resolution To face the large size of instances, heuristic decompositions
are useful to compute quickly primal solutions. The advantages of MIP facility to model and solve
the problem on reduced instances. A first approach is to built solutions iteratively in a relax-and-fix
procedure, to compute successively the solutions for cycles k once the cycles k' < k are fixed by
previous optimisation, relaxing continuously the cycles such that k' > k. An other approach is to
proceed unit by unit, similarly to a greedy heuristic.

Algorithm 1: POPMUSIC VND with MIP neighbourhoods
Input: an initial solutions, a set and order of neighbourhoods to explore
Initialisation: currentSol = initSolution, A" =initial neighbourhood.
while the stopping criterion is not met
define the MIP with incumbent currentSol and the neighbourhood N)
define currentSol as warmstart
currentSol = solveMIP(MIP,timeLimit( N))
N = nextNeighborhood(N)
end while
return CurrentSolution

VNS resolution Once a feasible solution is built with previous constructive matheuristics, a VND
iterates in a local search computing iterations with B&B resolution with MIP neighbourhoods.
The current solution is the primal solution given by the last B&B resolution and it is also defined
as warmstart for the next B&B resolution to improve the efficiency of B&B primal heuristics,
enabling RINS or Local Branching heuristics from the beginning. This ensures that the solution
given by the MIP resolution is at least as good as the current solution, this algorithm is thus a
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steepest descent algorithm. The stopping criterion could be a maximal time limit or a maximal
number of iterations, or being in a local extremum for all neighbourhoods. The key point is the
neighbourhoods definition and description. Neighbourhoods are defined with three characteristics:

— The restriction of search space: Variable fixations or other extra constraints that the current
solution satisfies to limit the MIP combinatoric to have an easier B&B resolution.

— a B&B stopping criterion: it must defined so that the B&B resolution is efficient in a short
resolution time.

— a specific parametrization of the MIP resolution: for an efficient B&B resolution in the
defined time limit.

The multi-index structure allows to define partitioning neighbourhoods:

— N#mits ynit selection: only units U € U are reoptimised. Successive neighbourhoods defining a
partition of Z are computed iteratively.
- J\/[{UV%]: all outages are reoptimised in the time window [w,@].
c?;cles

— N57°° « variables relative cycles k” with k < k” <k are reoptimised.

Algorithm 2: Pareto front computation with VND and MIP neighbourhoods
Initialisation: compute bestObjective with VND resolution Cpen™® = 0.
compute currentObjective,robustViolations with VND resolution with a high value of Cpen™®.
Let robustViolations the number of violations of robust constraints of the solution of currentObjective.
Pareto front <- (currentObjective,robustViolations)
while currentObjective>bestObjective
define currentObjective,robustViolations as wamstart for VND
currentObjective = solve VND with at most 1+robustViolations robust violations allowed
robustViolations = 1+robustViolations
Pareto front <- (currentObjective,robustViolations)
end while

return Pareto front

Multi-objective optimization Cost optimisation and robustness can be concurrent objectives. Cal-
culating Pareto fronts of best compromise cost/robustness solutions are interesting. Optimizing
with variations Cpen™® of provides points of the Pareto front. To compute more efficiently the
Pareto front, VND can be derived, constructing solutions from the more to the less robust. First
Pareto point is built with a high value of Cpen™® by VND. This point is also a feasible solution
with 1 more robust violation allowed, defining a warmstart for the computation of the next Point
of the Pareto front:

6 Computational results

Tests were computed with a laptop running Linux Ubuntu 12.04 with an Intel Core2 Duo processor,
2.80GHz. Our implementation used the modeling language OPL to solve MIP with Cplex 12.5 and
OPL script to iterate MIP computations. We used the dataset from the EURO/ROADEF 2010
challenge. Instances from dataset B and X are representative from the real-life instances, B8 and
B9 were much more combinatorial, due to the lack of time windows constraints for cycles k > 3,
these instances are representative from the real life instances.

6.1 Computational results on deterministic formulations

We analyse now the characteristics of the resolution of the deterministic problem of section 3.
Without stability cost (Cf an = 0), the problem is similar to the ROADEF Challenge, the frontal
resolution allows to analyse hypothesis of [2, 4, 3]. First results justify the commonly used simplifi-

cation to aggregate production time steps to weekly time steps, and to aggregate scenarios. Using
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Cplex 12.3, the frontal resolution was completely inefficient instances B8 et B9 even with time steps
and scenarios aggregation and relaxation of difficult constraints CT6 and CT12, 1h resolution time
is not enough to compute the LP relaxation. The size of these instances is a strong limiting factor.
For the other instances, the frontal MIP resolution is efficient, with low gaps between the best
primal and dual bounds in 1h resolution time.

Using Cplex 12.5, LP relaxations can be computed for all instances in 1h. However, the solutions
of the LP relaxation are not useful to compute primal solutions for B8 and B9. In these cases, several
production cycle can overlap and the LP relaxation gives very few integer variables, specially for
last cycles. Hence, this is a big handicap for MIP primal heuristics, relying on the LP relaxation
such as Feasibility Pump, RINS or Local Branching. The MIP frontal resolution is always inefficient
on B8 and B9.

Fig. 1. Instance B7-3-120 Fig. 2. Instance X12-3-120

Fig. 3. Pareto fronts for the trade off financial cost/solution stability

Adding stability costs change fundamentally the MIP convergence characteristics, guiding the
solution search around the baseline solution improves very significantly the resolution time. An
explication is that a lot of solution with similar cost exist with C%", = 0 which was already
notices for the Challenge. It induces “pseudo-symetries” in the Branch&Bound tree search which
is known to be a bottleneck for the Branch&Bound method. An application of these properties
is that it offers efficient reparation of partial infeasible solution built by a constructive heuristic,
with a high penalization of the distance to the partial solution, similarly to Feasibility Pump. The
computation of Pareto fronts starting with a poor first solution shows the impact of a good baseline
solution, we refer to Figure 3.

Constructive Matheuristics of section 5 applies to furnish feasible solutions for all instances.
Relax and fix approach gave very good solutions, but required sometimes long calculus time to
converge to solution in the MIP iterations. The greedy POPMUSIC strategy, using the previous
repairing strategy using a partial solution combining optimal solutions for single unit optimisa-
tion allows to build quickly primal solutions for all instances, but with a lower quality of primal
solutions than relax and fix strategies. The VND local search applied starting with the greedy
POPMUSIC solutions is very efficient, improving quickly primal solutions and requiring few VND
iterations to compute a local minimum for all neighbourhoods. The resulting matheuristic is more
efficient in the ration improvement of solution/computation time than the relax and fix heuristics.
Furthermore, comparing the local extrema given by the VND to the optimal solutions of small in-
stances (instances were truncated to obtain optimally proven solutions), we had no example where
the optimal solutions were better than the VND solutions more than the tolerance gap of Cplex
parametrized to 0,01%. The tolerance gap of Cplex of 0,01% induces sometimes that the VND
solutions were better than the “optimal” frontal solutions, within the 0,01% tolerance gap.

6.2 Computational results on robust formulations

First results with robust formulation of section 4 give few feasible solutions, even with the tiny
uncertainty set considering a scenario for all unit 7, where all the prolongations are null except
the cycle £ = 1 of unit ¢ which have a prolongation of 1 week. One reason is that the scheduling
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constraints CT14 and CT15 have a big impact and there is few margins with such constraints to
provide a feasible planning. Definition of robustness must also be relaxed for operational consider-
ations. Furthermore, Benders decomposition of section 4 is challenging to manage rounding errors:
dual variables computed in subproblems introduce rounding errors in the constraints (37), each
iteration of Benders decomposition adding rounding errors.
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0 5 10 15 20 25 20 5 10 15 20 25 30 35

On instance B7-3-120 On instance X12-3-120

Fig. 4. Pareto fronts for the trade off financial over-cost/robustness

Parametric approach of section 5 is conceptually simpler, but it provides solutions for all in-
stances following the operational requirement. Resolution characteristics are similar to the deter-
ministic problem, the VND approach provides easily solutions for all instances like in [19]. We
already mentionned that the deterministic formulation without stability cost induces lots of solu-
tions close to the optimal cost. Robustified formulation allows to trade-off among the best quality
solutions to provide operationally interesting solutions. Furthermore, this breaks pseudo-symetries
which is helpful for a Branch&Bound resolution.

The parametric resolution allowed to compute Pareto front of good compromise robustness/cost
solutions for all sizes of instances. Several configurations appeared, which is illustrated Figure 4.
On instance B7_3_120, a robust solution exists for all uncertainty scenario with a low overcost
to the optimal solution (0,2%). On instance X12_3_120, no feasible solution exists to be resistant
for all the uncertainty scenario. The most robust solution violating the least robust constraints
has an over-cost of 0,4%, over-costs decreasing quickly. In all cases, Pareto curves are interesting
for decision support, for a further choice of decision makers to trade-offf risk cover and financial
over-costs. Over-costs due to over-costs are generally low, which justifies to introduce robustness
for the industrial application.

7 Conclusions and perspectives

Conclusions Multi-objective extensions of the 2010 EURO/ROADEF 2010 Challenge were investi-
gated in this work. Our extensions are useful in the problematic of monthly reoptimisations, where
stability and robustness of the planning are crucial for the operational application. This study is
operationally useful as the 2010 ROADEF challenge furnish lots of solution with similar costs, do
decide on the solution to implement among the best ones with operational trade-off. Penalizing or
bounding the distance to the initial solutions allows to address stability questions. This extension
allows to have a MIP formulation omitting constraints CT6 and CT12 to formulate the problem
with less continuous variables. Considering stability objectives or constraints accelerates the MIP
frontal resolution, and allows to trade off interesting operational solutions.

Introducing uncertainty and robustness to outage duration can lead to 2 stage robust min-max-
min formulation. Anyway, the resolution with Benders reformulation is limited in the resolution
capacities, with difficulties induced by numerical stability. Furthermore, this formulation is too
conservative to give consistently solutions on the ROADEF dataset. A lighter robust version,
penalizing robust infeasibilities is consistent, for a 2-objective resolution computing Pareto fronts
with a VNS algorithm relying on the deterministic MIP formulation.
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Perspectives Financial stakes to arbitrate cost/stability /robustness are promising in the challenge
dataset for the operational application, these results should be consolidated on real data. Multi-
objective optimisation is an appropriate way to compute the maintenances of nuclear power plants.
Other objectives are interesting for a multi or many objective approaches for a sustainable devel-
opment optimization: minimizing nuclear wastes by consuming at most the fuel during outages,
minimizing carbon emissions . ..
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Abstract. In this paper we present a new hybrid meta heuristic by
combining Multi-objective bat algorithm (MOBA) and variable neigh-
borhood search (VNS). The hybrid meta heuristic is coupled with re-
sponse surface methodology (or meta modeling) to solve the mechanical
multi-objective optimization problem of hat stiffened composite panel.
The optimization criteria were the weight and the rigidity of the panel.
Experimental results show that our suggested approach is quite effective,
as it provides solutions that are competitive with the results obtained by
using MOBA alone.

Keywords: hat stiffened panel, multi-objective optimization, meta mod-
eling, multi-objective bat algorithm,variable neighborhood search

1 Introduction

The design of industrial structures in aeronautics is a constantly evolving field,
due to the perpetual need to gain weight and space in this domain. A lighter
aircraft means fewer loads to compensate, and thus less fuel consumption, which
decreases the greenhouse effect. Therefore, a lighter aircraft is beneficial at both
economic and environmental levels.

Composite material has been used in aerospace construction because of their
high stiffness to weight ratio and their resistance to fatigue and corrosion. In
particular, stiffened composite panels are widely used in aircraft’s fuselage, as
well as in wings and tail sections. However, such materials induce an additional
weight to the overall structure. Therefore, a rigidity-weight optimization of stiff-
ened panels becomes a necessity in aerospace industry.

In [1] a new method for manufacturing self-stiffened composite panels using
flexible injection was presented. Some mechanical properties of the new panels,
such as stiffness, were then evaluated using a three points bending test. The

* ahmad.el_samrout@utt.fr
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author studied the influence of the stiffener on the mechanical properties of the
composite.

The aim of our study is to improve the hat stiffened panels produced in [1]
using meta heuristics and response surface methodology. Two objective func-
tions are considered; the weight minimization and the rigidity maximization.
The kind of problem is well known in panel optimization literature. While some
researchers try to optimize the geometrical shape of the panel [2], [3], [4], others
rely on the stacking sequence of the composite panel as their optimization vari-
able [3], [6], [7], [8].

The use of meta modeling and multi objective meta heuristics is also well known
in these optimization problems, for instance [9] presented an optimization pro-
cedure for a geometric design of a composite material stiffened panel with con-
ventional stacking sequence using static analysis and hygrothermal effects. The
procedure is based on a global approach strategy, composed by two steps: first,
the response of the panel is obtained by a neural network system using the results
of finite element analyses and, in a second step, a multi-objective optimization
problem is solved using a genetic algorithm. In [10] a process to compare three
genetic algorithms (GAs) for the solution of multiobjective optimization prob-
lem of a T-shape composite stringer under compression loads has been presented.

This paper is organized as follows. In section 2 the geometrical dimensions,
physical proprieties, boundary conditions and finite element model of the panel
are illustrated. In section 3 the formulation of the optimization problem along
with the meta model and the hybrid meta heuristic are introduced. It is also
devoted for the presentation and the interpretation of the results. Finally, con-
clusion is given in section 4.

2 Model presentation and validation

The author in [1] developed a new procedure to produce composite plates of size
400 x 140 x 3mm reinforced with a centrally located Omega feature, then he
tested these panels using three points bending tests that he called omega test
and inverse omega test.

2.1 Panel composition and geometry

The sandwich hat-stiffened composite panel consists of three components: an
upper and a lower composite layers, separated by a foam core (see Figure 1.a)

The geometric parameters of this panel are presented in Figure 1.b. Eight
variables can represent the panel in a sufficient manner, but since we are trying
to study the influence of foam core, it is safe to assume that a = 406mm and
b = 140mm are constant. Also for the sake of simplicity we will assume that 4 is
equal to g. Table 1 shows the initial values of the panel’s variables.
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Fig. 1: a) Panel composition , b) Panel geometry.

Table 1: variable initial values

variables c d e f g h
values [mm] 260 46 240 20 1.5 14

2.2 Material Proprieties

The core is made from Foam K20(F = 1.5GPa;v = 0.3). The upper and
lower layers and the contour are made from glass fiber-epoxy. The ply lay-up
is [90,0,90] with a total number of 3 plies, each has a thickness of 0.47mm.

2.3 Meshing

The meshing (see Figure 2) is divided into two steps, the first step is to generate
the mesh of the core with tetrahedral elements. The second step is to generate
the skins of mesh (lower and upper) with hexahedral elements in each element
with 8 nodes and consists of 3 sections "Shell’ (90/0/90) with respect to the main
axis X. Orientation of the elements was taken into account.

Fig. 2: Meshing
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2.4 Loading and Boundary conditions

Our model will treat only the elastic behavior of the panel. According to [1],
the composite panel will act as an elastic panel while the bending force is under
2000N. In our finite element model a static force of 1000/N will be applied to
mid plan of the panel (upper layer in the case of omega test, and lower layer
in the case of inverse omega). While two supports distant by 209mm hold the
panel on the opposite side (see Figure 3).

¢ 1000 N

[, [, ~—209 mm—~
(a) (b)

Fig.3: Loading a) Omega loading , b) inverse omega.

The displacement along axis X, Y, and Z will be blocked for the supports.
To represent the force, the displacement along axis X and Y will be blocked
along the central support and the loading is distributed across all nodes in the Z
direction (1000/50 = 20N per node for omega and 1000/72 = 13.88N per node
for inverse omega).

2.5 Result and verification

The results of the finite element simulation are shown in Figure 4.

oo ser 1.009 S T ——T
- 708389 -.022064 Leesan2 1388 -.152687 “aesses s

Fig.4: Finite element results tests a) omega , b) inverse omega.
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The comparison of stiffness values for the composite panel, in the elastic
range, between the experimental results and the finite elements results, for both
omega and inverse omega is given in Table 2. This small range of error justifies
our model.

Table 2: Comparison between theoretical and experimental results

experimental finite elements Error %
results [N mm™?] results [N mm™?]
OMEGA 580.75 574.71 1.05
INV OMEGA 584.43 640.61 8.77

3 Multi objective optimization

The two objectives of the optimization problem are to maximize the rigidity R
and to minimize the weight W. The design variables are the dimensions of the
panel X = {c,d,e, f,g,h}. The values of the lower bound X; and upper bound
X, of X are shown in Table 3.

Therefore, the multi-objective optimization problem can be formulated as fol-
lows:

1

—_— 1
Subject to :

X <X <X, (2)

Minimize Fu,;(W(X),

Table 3: Upper and lower bounds for each variable

Variables C d e f g h
Lower bound X;[mm] 234 44 200 18 1.24 114
Upper bound X, [mm] 266 52 249 26 1.56  14.6

3.1 Meta Modeling

Finite element analysis usually costs a huge computational time. A common
solution to this problem is to use Meta modeling. A Meta model or surrogate
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model is a model of the model, i.e. a simplified model of an actual model. In our
case, the Meta model will try represent the mechanical behavior of the panel
with response to the bending experiences. It should be able to predict the defor-
mation of the plate, and hence it’s rigidity simply by knowing the geometrical
dimensions of the plate. Various types of Meta models include polynomial equa-
tions, neural network, Kriging, etc. These types often share the same steps; first
a design of experiments is established where a certain number of experiments
is done, each time with a different set of inputs. Then a systematic method to
determine the relationship between inputs affecting the process and the output
of that process is applied.

In our example the cubic face centered design was adopted as design of exper-
iments, then the finite element experience was repeated 80 times. The Meta
model used in our example to find the correlation between the deformation of
the panel and its geometrical parameters is Kriging which is a method of inter-
polation for which the interpolated values are modeled by a Gaussian process
governed by prior covariances. It is widely used in the domain of spatial analysis
and computer experiments.

By calculating the error percentage, i.e. the difference between the response of
the finite element model and the response of the meta model, one can determine
the degree of accuracy of our meta model in both omega and inverse omega tests.
In the case of omega, the error is smaller than 4 x 1072%, while in the case of
inverse omega the error is around 3 x 107%.

3.2 Hybrid algorithm

In this section, we attempt to optimize the meta model obtained in 3.1 w.r.t
the problem formulated in Equation 1 using a new hybrid based on MOBA and
VNS.

Multi-objective bat algorithm (MOBA) was first introduced in [11]. It is a
meta heuristic that imitates the bat’s echolocation system. It can be summarized
as follows: Each virtual bat flies randomly with a velocity v; at position (solution)
x; with a varying frequency or wavelength ¢ € [©min,Pmaz] and loudness A; and
where 8 € [0,1] is a random vector drawn from a uniform distribution and z, is
the current global best location (solution) which is located after comparing all
the solutions among all the n bats at each iteration ¢. As a bat searches and finds
its prey, it updated its position and velocity and changes frequency, loudness and
pulse emission rate 7. Search is intensified by a local random walk. Selection of
the best continues until a stop criteria is met.

Variable neighborhood search (VNS),was initially proposed by [12]. It is
a meta heuristic that explores distant neighborhoods of the current incumbent
solution, and moves from there to a new one if and only if an improvement was
made. The local search method is applied repeatedly to get from solutions in the
neighborhood to local optima.
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Hybrid algorithm The choice MOBA and VNS as components for the hybrid
algorithm is justified by the fact that these two meta heuristics are comple-
mentary to each other; MOBA is a population-based method that is capable
of exploring the search space , while VNS is a trajectory-based method that is
known for intensifying the search.

In our hybrid algorithm, the solutions obtained by MOBA are taken as initial
solutions for VNS. From these ”"good” solutions, VNS divides the search space
into sub-structures and then guides the search aggressively towards better solu-
tions. The algorithm is clarified in Algorithm 1. We implemented the algorithms
in MATLAB 2015a language and ran it on a PC with 2.2 GHz and 8 GB RAM
memory, with a bat population size of 20 bat and an initial loudness parameter
of 0.25 and a pulse rate of 0.5. The frequency range was [0,2].

Algorithm 1 hybrid MOBA

1: procedure MOBA
2: Objective functions fi(x), ..., fu(z)

3: Initialize the bat population z; (i =1,2,...,n)and v;
4: for j =1 — N (points on Pareto fronts) do
5: Generate K weights wy > 0 so that Zszl wi =1
6: Form a single objective f = Zszl wi [
T while ¢t < Maz number of iterations do
8: ®i = Pmin + (Pmaz — Pmin)B
9: vith = of + (2 — 2)
10: ot =i+
11: if rand > r; then
12: Random walk around a selected best solution
13: Generate a new solution by flying randomly
14: if (rand < A;) & (f(z;) < f(z«)) then
15: Accept the new solutions
16: increase r;and reduce A;
17: Rank the bats and find the current best x.
18: Record z.as a non-dominated solution
19: procedure VNS
20: Divide the set of non dominated solutions obtained in MOBA into kmaz Structures
21: for every solution = obtained in MOBA do
22: k=1
23: while (k < ko) & (Maz number of iterations is not reached) do
24: Shaking: generate a point = at random from the k" neighborhood of x
25: Local search: apply a local search method with z as initial solution;
26: denote with = the so obtained local optimum
27: if (w” is better than x) then
28: Tz
29: k<+1
30: elsek +— k+1
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3.3 Results
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Fig. 5: Pareto frontier a) Omega , b) inverse omega.

Figure 5 shows the Pareto frontier (PF) for both omega and inverse omega
cases, obtained using MOBA and hybrid MOBA (MOBA + VNS). All the points
on PF are equally "good”, and each point represent a set of dimension that
guaranties an optimum panel.

In order to evaluate the solutions obtained using MOBA + VNS, and compare
them with those obtained using only MOBA, we will use two metrics proposed

by [16]:

1. MID (mean ideal distance): The closeness between Pareto solution and ideal
point (0, 0). The lower value of MID, the better of solution quality we have.

2. SNS: The spread of non-dominance solution. The higher value of SNS, the
better of solution quality we have.

Table 4 gives a comparison between MOBA and hybrid MOBA in omega and
inverse omega cases using MID and SNS metrics. It shows clearly that our hybrid
model is superior to the original algorithm except for the spread (SNS) in the
case of inverse omega test.
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Table 4: Comparison between MOBA and hybrid MOBA

hybrid MOBA hybrid MOBA
MOBA omega MOBA inverse omega
omega inverse omega
MID  326.8727 330.5729 318.1531 326.7924
SNS 13.6755 13.2973 11.3325 13.7764

4 Conclusion

In this paper we presented a new hybrid meta heuristic based on the combination
of MOBA and VNS, because of their complementary strengths. The meta mod-
eling technique is also used to make the optimization more suitable.The hybrid
algorithm is tested on a multi-objective optimization problem of hat stiffened
composite panel. The optimization criteria were the weight and the rigidity of
the panel. Experimental results show that our suggested approach is quite effec-
tive, as it provides solutions that are competitive with the results obtained by
using MOBA alone.
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A Simple and Efficient Variable Neighborhood Structure
For The Satisfiability Problem

Noureddine Bouhmala
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Abstract. The Satisfiability Problem (SAT) is viewed as one of the fundamental optimiza-
tion problems. This NP-complete problem refers to the task of finding a variable assignment
that satisfies all the clauses in a Boolean Formula. Most local search algorithms used to solve
SAT problems rely on the 1-flip neighborhood structure. This paper introduces a simple and
efficient variable neighborhood strategy. The effectiveness of this neighborhood structure is
tested using GSAT-RW and an evolutionary algorithm on various benchmark instances.
Keywords: satisfiability problem, memetic algorithm, variable neighborhood search.

1 Introduction

The SAT problem which is known to be NP-complete [3] is defined as follows. Given a set of
n Boolean variables and a conjunctive normal form (CNF) of a set of m disjunctive clauses of
literals, where each literal is a variable or its negation which takes one of the two values True or
False and a positive constant k, the task is to determine whether there exist an assignment of
truth values of the variables that satisfies the maximum number k of clauses. SAT still deserves
much research attention from a wider community of researchers due to its theoretical and practical
importance. It is a widely used modeling framework for simulating complex systems that turn
out to be of combinatorial nature. Different state-of-the-art local search algorithms for solving
SAT have been developed [1]. Several of these algorithms are enhanced versions of earliest GSAT
[13] and WalkSAT [14] algorithms. Examples include GSAT/Tabu [10], WalkSAT/Tabu [11], R~
Novelty+ [9] heuristics, variable and clause weighting algorithms [17] , dynamic parameter tuning
algorithms [8], adaptive memory-based local search hybrid approaches [7] , larger neighborhood
search algorithms [20], Learning Automata [4],, Iterated Robust Tabu Search (IRoTS) [15], and
finally algorithms based on a new diversification scheme to prevent cycling [2]. VNS has been
applied to a wide variety of problems from combinatorial optimizations. Examples include feature
selection in data mining [12], scheduling problem [5], and vehicle routing problem [19]. However,
the author is not aware of any paper introducing VNS for solving SAT except the work conducted
in [6], where the focus is on a variant called the weighted MAX-SAT in which each clause is assigned
a positive weight and the objective of this problem is to maximize the sum of weights of satisfied
clauses by any assignment.

2 Meta-Heuristics

2.1 GSAT-RW

The choice behind GSAT [13] algorithm has been motivated by the fact that it represents the
basic architecture for most stochastic local search algorithms for MAX-SAT. The introduction of
an element of randomness (i.e, noise) into local search methods is common practice for improving
effectiveness through diversification. In this spirit, the GSAT-RW algorithm, starts with a randomly
chosen assignment. Thereafter, two possible strategies are used for selecting the variable to be
flipped at each iteration of the algorithm. The first strategy is taking a walk-step, which amounts
to randomly selecting a currently unsatisfied clause and then flipping one of its variables, also in
a random manner. Thus, at each walk-step, at least one unsatisfied clause becomes satisfied. The
other strategy uses a greedy search to choose a random variable from the set PossFlips, which
contains the variables that when flipped (individually) achieve the largest decrease (or the least
increase) in the total number of unsatisfied clause.
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2.2 Memetic Algorithms (MAs)

Memetic Algorithms are stochastic global search heuristics in which Evolutionary Algorithms-based
approaches are combined with search heuristics techniques. This hybridization is used in order to
accelerate the discovery of high quality solutions, for which evolution alone would take too long to
discover. The memetic algorithm used in this paper is implemented as follows:

— Representation:

The chromosomes (individuals) which are assignments of values to the variables are encoded
as strings of bits, the length of which is the number of variables (or clusters if MA is operating
on a coarse level). The values True and False are represented by 1 and 0 respectively. In this
representation , an individual X corresponds to a truth assignment and the search space is the
set S ={0,1}".

— Fitness function:

The notion of fitness is fundamental to the application of memetic algorithms. It is a numerical
value that expresses the performance of an individual (solution) so that different individuals
can be compared. The fitness of a chromosome (individual) is equal to the number of clauses
that are unsatisfied by the truth assignment represented by the chromosome.

— Initial population:

A initial solution is generated using a population consisting of 50 individuals. According to
our computational experience, larger populations do not bring effective improvements on the
quality of the results. At the coarsest level, MA will randomly generate an initial population
of 50 individuals in which each gene’s allele is assigned the value 0 or 1.

— Crossover: The individuals are visited in random order. An unmatched individual i is
matched randomly with an unmatched individual ¢;. Thereafter, the two-point crossover oper-
ator is applied using a crossover probability to each matched pair of individuals. The two-point
crossover selects two randomly points within a chromosome and then interchanges the two par-
ent chromosomes between these points to generate two new offspring. Recombination can be
defined as a process in which a set of configurations (solutions referred as parents ) undergoes
a transformation to create a set of configurations (referred as offspring). The creation of these
descendants involves the location and combinations of features extracted from the parents.
The reason behind choosing the two point crossover are the results presented in [18] where the
difference between the different crossovers are not significant when the problem to be solved
is hard. The work conducted in [16] shows that the two-point crossover is more effective when
the problem at hand is difficult to solve.

— Mutation: Let C' = ¢y, co, ...... ¢m be a chromosome represented by a binary chain where each
of whose gene ¢; is either 0 or 1. In our mutation operator, each gene ¢; is mutated through
flipping this gene’s allele from 0 to 1 or from 1 to 0 if the probability test is passed.

— Selection: The selection operator acts on individuals in the current population. Based on
each individual quality (fitness), it determines the next population. In the roulette method,
the selection is stochastic and biased toward the best individuals. The first step is to calculate
the cumulative fitness of the whole population through the sum of the fitness of all individuals.
After that, the probability of selection is calculated for each individual as being Pseiection; =
fi/ Ef, fi, where f; is the fitness of individual i.

— Local Search: A fast and simple local search is used for one iteration during which it seeks for
the variable-value assignment with the largest decrease or the smallest increase in the number
of unsatisfied clauses. Random tie breaking strategy is used between variables with identical
score.

— Convergence Criteria: As soon as the population tends to loose its diversity, premature
convergence occurs and all individuals in the population tend to be identical with almost the
same fitness value. The proposed memetic algorithm is assumed to reach convergence when no
further improvement of the best solution (the fittest chromosome) has not been made during
two consecutive generations.

— Changing Neighborhood: Having improved the assignment at the neighborhood N, 1, the
assignment must be projected onto its parent neighborhood N,,. The projection process is
trivial; if a cluster C; € Np,41 is assigned the value of true then the matched pair of clusters
that it represents, C; and C} € Ny, are also assigned the value true. The same process is used
for VNS-GSAT-RW.
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3 The Variable Neighborhood Structure

Variable neighborhood search (VNS for short) [6] aims at finding a tactical interplay between
diversification and intensification to overcome local optimality using a combination of a local
search with systematic changes of neighborhood. Diversification refers to the ability to explore
many different regions of the search space, whereas intensification refers to the ability to obtain
high quality solutions within those regions. The proposed variable neighborhood structure
works as follows:

e Phase 1: Let P denotes the set of literals of the problem to be solved. The first phase
of the algorithm consists in constructing a set of neighborhood satisfying the following
property: Ni(x) C Na(z) C .....Nj,,,. (x). The starting (default) neighborhood with & =0
consists of a move based on the flip of a single variable. A flip means assigning the opposite
state to a variable ( i.e change True — False or False — True ). The first neighborhood
Nj is constructed from Fy by merging literals. The merging procedure is computed using
a randomized algorithm. The literals are visited in a random order. If a literal /; has not
been matched yet, then a randomly unmatched literal [; is selected, and a new literal I, (a
cluster) consisting of the two literals [; and [; is created. The set N; consists of the move
based on flipping predefined clusters each having 2! variables. The new formed clusters
are used to define a new and larger neighborhood N5 and recursively iterate the process
until the desired number of neighborhood (ky,q.) is reached. Thereafter a random solution
is generated from the largest neighborhood (N, . ) . The random solution consists in
assigning a random state (True or False) to each cluster and all the literals within that
cluster will get the same state.

e Phase 2: The second phase which is the most crucial aims at selecting the different neigh-
borhoods according to some strategy for the effectiveness of the search process. The strategy
adopted in this work is to let VNS start the search process from the largest neighborhood
Ni,... and continues to move towards smaller neighborhood structures. The motivation
behind this strategy is that the order in which the neighborhood structures have been
selected offers a better mechanism for performing diversification and intensification. The
largest neighborhood N4, allows WS to view any cluster of literals as a single entity lead-
ing the search to become guided in far away regions of the solution space and restricted
to only those configurations in the solution space in which the literals grouped within a
cluster are assigned the same value. As the switch from one neighborhood to another im-
plies a decrease in the size of the neighborhood, the search is intensified around solutions
from previous neighborhoods in order to reach better ones. Once the search has reached
the convergence criterion with respect to a neighborhood NN;, the assignment reached on
that neighborhood must be projected on its parent neighborhood N;_i. The projection
algorithm is simple; if a cluster ¢; €N, is assigned the value of true then the merged pair
of clusters that it represents, c;, ¢ €N,,—1 are also assigned the true value.

4 Experimental Results

e GSAT-RW
To illustrate the potential gains of the proposed variable neighborhood structure when com-
bined with GSAT-RW, a selected benchmark suite covering different domains (Random-3-
SAT, SAT-encoded graph coloring problems, SAT-encoded logistics problems, SAT-encoded
block world planning problems, SAT-encoded quasi-group Problems) These instances are
by no means intended to be exhaustive but rather give an indication of typical performance
behavior. All these benchmark instances are known to be hard and difficult to solve and are
available from the SATLIB website (http://www.informatik.tu-darmstadt.de/AI/SATLIB).
All the instances are satisfiable instances and have been used widely in the literature in
order to give an overall picture of the performance of different algorithms. Due to the ran-
domization of GSAT-RW each problem instance is run 100 times with a cutoff parameter
(maximum allowed solving time is set at 300 seconds). GSAT is assumed to reach conver-
gence with respect to a given neighborhood if the best assignment has been improved for
50 consecutive iterations. The cardinality of the neighborhood (knqx) is set such that the
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number of the formed clusters is 10% of the size of the problem instance (i.e, a problem
with 100 variables will lead to kjq. equals to 4 (Ng , N1, Ny, N3 )).
e MA
A set of large problem instances taken from real industrial bounded model checking hard-
ware designs is used to test the performance of VNS-MA.. This set is taken from (http://www.informatik.tu-
darmstadt.de/AI/SATLIB). All the benchmark instances used in this experiment are satis-
fiable instances. The tests were carried out on a DELL machine with 800 MHz CPU and 2
GB of memory. The code was written in C and compiled with the GNU C compiler version
4.6. The parameters used in the experiment are listed below:

x Crossover probability = 1

* Mutation probability = 0.1.

* Population size = 50 .

x MA is assumed to have reached convergence and switch to a smaller neighborhood
if the fitness of the fittest chromosome remains unchanged during five consecutive
generations.

* The cardinality of the neighborhood is the same as the one chosen for GSAT-RW.
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Fig. 1. Evolution of the best solution on a 300 variable problem with 1117 clauses (logarithmic scale)
(flat100.cnf). .Evolution of the best solution on a 116 variable problem with 953 clauses (block-medium).
Along the horizontal axis we give the time in seconds, and along the vertical axis the number of unsatisfied
clauses.

Overall, at least for the instances tested here, we observe that the search pattern happens in
two phases. In the first phase that corresponds to the early part of the search, both GSAT-
RW and VNS-GSAT-RW behave as a hill-climbing method. This phase can be described as
a fast-working one, with a large number of the clauses being satisfied. The best assignment
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clauses (logarithmic scale)(qg6-9.cnf). Right: Evolution of the best solution on a 512 variable problem with
148957 clauses (logarithmic scale)(qgl-8.cnf). Along the horizontal axis we give the time in seconds, and
along the vertical axis the number of unsatisfied clauses.
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climbs rapidly at first, and then flattens off as we mount the plateau, marking the start of the
second phase. The plateau spans a region in the search space where flips typically leave the best
assignment unchanged. The long plateau becomes even more pronounced as the number of flips
increases, and occurs more specifically in trying to satisfy the last few remaining clauses. The
transition to the plateau corresponds to a change to the region where a small number of flips
gradually improves the score of the current solution ending with an improvement of the best
assignment. The plateau is rather short with VNS-GSAT-RW compared with that of GSAT.
The projected solution from one larger neighborhood to another finer one offers an elegant
mechanism to reduce the length of the plateau as it consists of more degrees of freedom that
can be used for further improving the best solution. Comparing GSAT-RW with VNS-GSAT-
RW for small sized problems (up to 1500 clauses), both algorithms seem to be reaching the
optimal quality solutions. It is not immediately clear which of the two algorithms converges
more rapidly. This is probably highly dependent on the choice of the instances in the test
suite. For example, the run time required by VNS-GSAT-RW for solving instance flat100-239
is more than 12 times higher than the mean run-time of GSAT-RW (25 sec vs 2 sec). The
situation is reversed when solving the instance block-medium (20 sec vs 70 sec). The difference
in convergence behavior of both algorithms start to become more distinctive as the size of the
problem increases. All the plots show a clear dominance of VNS-GSAT-RW over GSAT-RW
throughout the whole run. VNS-GSAT-RW shows a better asymptotic convergence (to around
0.008% — 0.1%) in excess of the optimal solution as compared with GSAT-RW which only
reach around (0.01% — 11%). Figures 6-10 compares MA against VNS-MA and shows how the
best assignment (fittest chromosome) progresses during the search. The performance of MA
is unsatisfactory and is getting even far more dramatic for larger problems as the percentage
excess over the solution is higher compared to that of VNS-MA. The curves show no cross-over
implying that VNS-MA dominates MA. The asymptotic performance offered by VNS-VMA is
impressive. In some cases, the difference in performance reaches 30% during the first seconds,
and maintains it during the whole search process. However, on other cases, the difference in
performance continues to increase as the search progresses. The differences in quality is within
66% for problems less than 150.000 clauses. For larger problems, the difference can get as high
as 77%. This is perhaps not a surprise since there is a much greater potential for large problems,
and hence the variable neighborhood structure is more likely to be of assistance. The larger the
problem, the more neighborhoods is needed, and consequently the more refinement at different
neighborhoods takes place.
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Fig. 6. bmc-galileo9.cnf: |V| = 63624,|C| = 326999. Along the horizontal axis we give the time (in seconds)
, and along the vertical axis the number of unsatisfied clauses. bmc-ibm-1.cnf: |V| = 9685, |C| = 55870

5 Conclusions

In this work, two hybrid approaches combining VNS with MA and GSAT-RW have been de-
scribed. VNS follows a simple principle that is based on systematic changes of neighborhood
within the search. The set of neighborhood proposed in this paper can easily be incorporated
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into any meta- heuristic when dealing with various combinatorial optimization problems. Start-
ing the search from the largest neighborhood and moving systematically towards the smallest
neighborhood is a better strategy for performing diversification and intensification. The key
success behind the efficiency of VNS-MA and VNS-GSAT-RW relies on the neighborhood
structure used. VNS-MA draws its strength from coupling the optimization process across dif-
ferent neighborhoods. By allowing MA and GSAT-RW to view a cluster of variables as a single
entity, the search becomes guided and restricted to only those configurations in the solution
space in which the variables grouped within a cluster are assigned the same value. As the size
of the clusters varies from one neighborhood to another, the size of the neighborhood becomes
adaptive and allows the possibility of exploring different regions in the search space while in-
tensifying the search by exploiting the solutions from previous neighborhoods in order to reach
better solutions.
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Abstract. This paper deals with the scheduling of the household appliances over a one-day
time horizon subdivided to 96 time slots, each time slot is equal to 15 minutes. Given the
load profile and the time windows of the time shiftable appliances, the outdoor temperature,
the maximum, the minimum, the dead-band limits and the desired indoor temperature,
the parameters of the electric heater and the time-varying electricity price, our aim is to
minimize the total cost of electricity usage and the total discomfort of all houses while
fulfilling the time shiftable and thermal appliances’ constraints. The discomfort is divided
into two parts: timing discomfort and thermal discomfort, the former part is modeled by
lowering the delay time in the use of time shiftable appliances, the latter part a penalty is
attributed to deviations from the desired thermal state. In order to avoid the creation of new
power peaks caused by the load shifting to the least price periods, the standard deviation
from the ideal load curve (the average load of all houses) is also minimized simultaneously
with the previous objectives. We propose a multi-objective evolutionary algorithm to tackle
the optimization model in a reasonable computing time. The simulation results from different
case studies are presented and show the effectiveness of the proposed algorithm in reducing
the total cost, ensuring a comfort level for all houses, as well as preventing the creation of
new peaks.

Keywords Time-varying pricing, household, appliance, scheduling, evolutionary algorithm.

1 Introduction

In the wholesale electricity market, the cost of the electricity supply changes substantially depend-
ing on the season and time of day. However, in the retail market, consumers usually paid their
electricity consumption based on static prices, which means it costs the same amount regardless
of when it is used [7]. For this reason, the electricity demand remains relatively unresponsive to
the wholesale prices, requiring the massive reinforcement of extra production capacities and dis-
tribution networks. The emerging of smart grid technology is expected to help the implementation
of electricity time-varying pricing where demand is sensitive to the prices. Through an automated
energy management system (EMS) it will be effectively and accurately able to automate the con-
sumers’ electricity use in response to the grid and weather conditions, the desired thermal comfort
level, and local energy generation. Indeed the primary objective of an automated energy manage-
ment system is helping to optimally schedule the electricity used during on-peak periods through
some demand response techniques, including peak shaving, flexible loads shifting, and valley fill-
ing [3]. These last years, the deployment of demand response benefits in homes has become more
challenging with respect to the diversity of household electric appliances, the multiobjective con-
flicting nature of the residential consumer’s targets, and the incoordination of energy demand
between homes. Hence, based on the two way flow of information and power, and the electricity
time-varying pricing, several scheduling optimization algorithm is proposed in [1,4,6,9]. [4] tackles
the anticipation layer of a home automation system. The household energy allocation is controlled
by taking into account predicted events. The problem is formulated as a constraint satisfaction
problem. Two objectives are considered: the energy cost and the user comfort. The thermal comfort
criterion was defined by the threshold and treated as a constraint. Due to the NP-Hard complexity
of the problem a tabu search (TS) is applied, minimizing a penalty function of constraint violation
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in a first phase and the energy cost in the second phase once a feasible solution was found. However,
in spite of the relatively high computation time to schedule only two electricity consumption tasks
and two heating systems, the results show also that the TS algorithm settings are problem depen-
dent, and different strategies are proposed to deal with all situations. In [6] the load scheduling
using a multiobjective genetic approach were performed by the authors and promising results were
obtained. Two objectives are considered the electricity bill and the end-user’s dissatisfaction. In [1]
a non linear formulation of a simple electrical load management in smart homes where appliances
have non linear time varying power consumption, and solved by a customized evolutionary algo-
rithm combined with a local search technique. In [9] a cooperative particle swarm optimization
is used to solve appliances scheduling problem for a set of smart homes. The authors classify the
appliances into time shiftable devices and power shiftable devices. The simulation results indicate
that the coordination between homes leads to reduce the electricity cost and avoid peak rebounds.
In this paper, we propose a multiobjective evolutionary algorithm (EA) to schedule the controllable
appliances in multi-home context. The objective is to reduce the electricity cost, discomfort while
avoiding peak rebounds. The discomfort is divided into two parts; timing discomfort and thermal
discomfort, the former part is modeled by lowering the delay time in the use of time shiftable
appliances due to the load shifting, the latter part we attribute a penalty to deviations from the
desired thermal state. The algorithm schedules the household appliances, ensures a comfort level,
as well as flattens the total aggregated load curve of all houses. The remainder of this paper is
structured as follows. In section II, the mathematical model is formulated. Section III introduces
the multiobjective EA approach used in this study. In section IV, simulations and results are given.
Section V concludes the paper.

2 Mathematical Model

This section presents the modeling of the household appliances scheduling problem and lists the
household appliances’ constraints. In this model we consider two kinds of household appliances,
time shiftable appliances (TSA) and thermal appliances (TA).

2.1 Objectives

The objectives of the household appliances scheduling problem is the minimization of the total
cost Feoer in (1), the total discomfort Fyiscomfort in (2), and the standard deviation of the elec-
tricity consumption Fyq in (3) of all houses over the entire scheduling period. Mathematically,
the scheduling problem considered as a multiobjective optimization problem and is formulated as
follows:

H T
F,.,st = min ZZ Z Ph,t X Ct (1)

t=1 ac AUC
H h,a H h,c
1 Ur. 1 Uy
: E E TSA E TA
Fdiscomfort = min —— as + E C (2)
h=1lacA h=1 ceC

Zt 1(Xaeave Py — Ideal)?
Fyy = min T (3)

Where Ideal is the average load for all household appliances considered and is calculated as

follows:
Ideal h=1 t=1 a€AUC ~ h,t (4)

Here, t is the time slot indice, h is the house indice, T is the number of time slots representing
the scheduling horizon, H is the number of houses, ¢; is the electricity price of the grid at time
slot ¢, a is the appliance indice, A set of time shiftable appliances, C set of thermal, Py, is the
power consumed by the appliance a at time slot ¢ in the h — th house, U;gA is the delay time of
the a — th TSA of the h — th house, U;*Af is the discomfort level of ¢ — th TA of the h — th house.
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2.2 Time shiftable appliances (TSA)

Let the ST® .., ST/ pShae ETMe —and D™®  the current starting time, the minimum
starting time, the preferred starting time, the maximum ending time, and the processing time
duration of the a — th TSA of the h — th house respectively (ST/% < PS™e < ETIe — DM .
The processing time DZ’OGT,C is the number of time slots for the operation of the TSA appliance.
(EThae — ST ~— Dfuoark) The delay time of TSA is shown in equation. 5. Figure 1 illustrates
the relationships between the TSA comfort level parameters. The later the time shiftable appliance

operates, the larger delay time becomes. The greater ET/% — ST;;’;; is, the more possible solutions

there are.

. h,a h,a h,a h,a
0 if STmzn < STcurrent < PS + Dwork
h,a
UTSA - ST pgha h h.a h h,a (5)
orent ™ . a s a a ’
ET,}:L};C':—BZ”Q%—PS}M“ X 1007 it PS + Dwork < STh,cuTrent < ETmam Dwov'k
Dy
a a h,a
ST, ps" ET 5,

Unacceptable comfort zone
Tolerable comfort zone

I Preferred comfort zone

Fig. 1: Tllustration of time shiftable appliances comfort level parameters

2.3 Thermal appliances (TA)

According to the temperature model given in [2], the indoor temperature at every time slot ¢ can

be expressed by the following equation. 6:

COP - ppee

) (©)
Where € is the inertia factor, A is the thermal conductivity (kW/C') and COP is the coefficient

of performance. Ty4', T}, is the outdoor temperature at time slot ¢ of the household h. The

discomfort level of the HVAC is expressed as follows :

T = T+ (1 - (IX3' +

. _
yhHVAC _ 100 Z,Lt (7)
TA - T ATin
T t ATFLLtImaI
Where AT} .. = max (T = Ti% o Tit o — THS) and djf", is calculated as follows :
T,f;s — T;Z; if T;fmm < T;;jt < T,?;S — AT}"
‘ 0 if Tyles — AT, <TG < Ty + AT}
e = (8)

hit =
in in ; des in in in
T, =Ty HTRY + AT, < Ty < Thlae

AT otherwise

h,max’
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Fig. 2: ustration of HVAC comfort level

Equation 7 ensures that the indoor temperature of house h needs to be felt in in the accept-
able comfort range, where Th i T;’L"max, T,‘f <, AT, ZL"L and AT{" {1y are respectively the minimal,
maximal, the desired temperature the lower and upper dead band limits the user can set without
a significant effect on his/her thermal comfort. Figure 2 illustrates the relationships between the

HVAC comfort level parameters.

3 Multiobjective Evolutionary Algorithm

In this section we describe the proposed algorithm to deal with the household appliance scheduling
problem using the pareto approach. The main major steps of the multiobjective EA algorithm are
stated as follows:

3.1 Individual representation and initialization

In the decision space, the representation of solutions determines the efficiency and effectiveness of
the algorithm, the representation vector X is a vector with a dimension of H x |a| + T, it’s used
as the chromosome representation of the individual as shown as follows in equation. 9:

X = [STcurrcnt7 PHVAC’] (9)
where

current __ current current current
ST = [ST} , STEu STgurrent)

g ey
current __ current current current
STh - [STh,a ’ STh,aJrl ’ ST h,la| ]

HVAC HVAC pHVAC HVAC
P =[P, P Py ]

HVAC HVAC HVAC HV AC
P = [PHYVAC pYAC . pHYAC]

STC“T”"’” is an integer variable representing the starting time of TSA a of the h household,
and is 1n1t1ahzed with a random integer value between ST, ,’l”;”, and ET, "M — D“’ON‘? and PH vAC
is a real variable representing the power required by the HVAC of household h at time slot t and
is initialized with a random real value between 0.0 and P{ngch where P}f‘%lﬁc is the maximum
power of the HVAC appliance.
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3.2 Selection, crossover and mutation

Here, a deterministic tournament is used between two randomly chosen individuals. A random
swap is implemented as a crossover operator. It picks a random position in the starting time and
HVAC power decision vectors respectively, and exchanges their values. This crossover operator
guarantees the producing feasible offsprings. The mutation provides diversity in the population
and is carried in the algorithm by changing a certain fraction of starting time and power of HVAC
respectively. The new generated starting time and power of HVAC will be generated randomly
between [STy"m — ET;"® — D] and [0.0, PFY 4C] respectively.

h,a h,a h,mazx

4 Simulations and Results

4.1 Data

The 24 hour day-time is divided into T' = 96 equal time slots, each time slot ¢ € {1,...,T} is 15
minutes. We assume to consider the time-varying electricity prices as shown in Fig. 3. The outdoor
temperature curve is given in Fig. 4. It is supposed that the number of households is H = 5.
The power load profiles of EDW, ECW, and ECD are respectively [1.2,1.2,0.2,1.1,0.68,0.8,0.6],
[0.52,0.65,0.52], [2.95,2.91,2.90,0.19], and are taken from the paper [5]. The parameter settings of
TSA are listed in Table. 1. The HVAC settings data are taken from [2] (P}fn‘i(ﬁc = 3.5kW,COP =
2.5,e = 0.98, A = 0.45kW/°C), T;" . . Tles Tin AT and AT, are 15°C,20°C,24°C, 2,
and 3 respectively. The parameter éettings of the EA algori"chm are as follows. The population size
is 100, the number of iterations is 100. The probability of the crossover is 0.25. The probability of
the mutation is 0.35. All the simulations are carried out with ParadisEO 2.0.1 framework [8], and
executed on Intel Core i3 380M 2.53 GHz personal computer with 4.0 gigabyte of RAM. Figures
are displayed using Matlab.

Table 1: Parameter settings of TSA

Time slot
. PArAmeter| gpha | ppha | pha | pghia
Time mn work
shiftalbe appliance @
ECW 20 96 3 24
ECD 20 96 4 24
EDW 20 96 7 24

Price (Cents /kWh)

0 8 16 24 32 40 48 56 64 72 80 88 96
t

Fig. 3: Electricity prices
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4.2 Results

Figure. 5 displays the pareto optimal front in the two (Feost and Fyiscom fort) and (Feost, Faiscom fort
and Fs:q) objective spaces, which are noted later by Case I and Case II respectively. The extreme
solutions (A) and (B) for case I, (C), (D), and (E) for case II are displayed in figures. 6, 7, 8, 9,
and 10 respectively. The solution includes the power transmitted from the grid to the TSA, the
total power demand, and the mean indoor temperature of all houses at each time slot ¢ over a
period of one day. Table (2) lists the simulation results for Case I and IT with a reasonable running
time equal to 6.33 and 9.12 respectively. As we can see, the solution (A) is the most favorable
economically,however, the maximum power peak was at its highest level in time slot compared
with other solutions and the the mean indoor temperature is below the dead band lower limit
for most of the time slots. Solutions (B) and (D) are the most favorable for the point of timing
and thermal comfort. The mean indoor temperature is between the dead band lower limit and the
desired temperature for most of the time slots in order to guarantee the preferred thermal comfort.
The scheduling of TSA current starting times is near to the preferred starting times which is equal
to 24 for all TSA appliances. Solution (E) is the most favorable from the point of view of the grid
with the lowest maximum peak and minimal standard deviation with respect to other solutions.
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Fig. 5: Pareto optimal front
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Table 2: Simulation results
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Solutions ‘Cost (Cents)

Discomfort (%)[STD (kW)[Mean Power (kW)[Maximum peak (kW)[Runtime (s)

Case I (Two objectives)

Solution A|513.412 41.9427 3.00948 8.5504 22.4679 6.33

Solution B [569.159 10.1546 3.07063 9.1471 21.4435 ’
Case II (Three objectives)

Solution C|528.72 48.15560 3.036960 [8.9053 18.5217

Solution D{603.545 7.321010 2.506480 |9.7048 16.3013 9.12

Solution E|561.982 31.7631 1.95812 9.0863 15.0263

5 Conclusions

This paper presents a problem of a households appliance scheduling under the electricity time-
varying pricing. We developed an evolutionary algorithm to schedule both the starting time of
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time shiftable appliances and the power of thermal appliances. Future studies should investigate a
stochastic programming model of the household appliance scheduling. We focus on the electricity
price uncertainty which can expect to lead to significant changes of the solutions compared with
the deterministic household appliance scheduling model given in this work.
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Abstract: A parallel genetic algorithm (GA) implemented on GPU clusters is proposed to solve the
Uncapacitated Single Allocation p-Hub Median problem. The GA uses binary and integer encoding
and genetic operators adapted to this problem. Our GA is improved by generated initial solution with
hubs located at middle nodes. The obtained experimental results are compared with the best known
solutions on all benchmarks on instances up to 1000 nodes. Furthermore, we solve our own randomly
generated instances up to 6000 nodes. Our approach outperforms most well-known heuristics in terms
of solution quality and time execution and it allows hitherto unsolved problems to be solved.

Keywords: Parrallel genetic algorithms, GPU, CUDA, p-hub median problem.

1 Introduction

Hubs are sort of facilities that serve to transfer, transhipment and sort in a many-to-many complex
distribution networks. They find their applications in airline passengers and fret networks,
telecommunications and postal delivery networks. In the air traffic, hubs are the central airports for the long
haul by cargo planes for goods and major carriers of passengers. In the telecommunication networks, hubs
may be concentrators, routers, multiplexers [26]. In the postal distribution networks, hubs are the major
sorting centre and cross docking messaging. The development of this type of network is due to economy of
scale achieved by consolidating the traffic through the hub-hub arcs [1].

A rich scientific literature about hub location problems has been developed since 1980 and articles
number has increased recently. Different variants of hub location problems have been defined and classified
according to allocation way: the single allocation where each spoke (non-hub node) is assigned to exactly
one hub and the multiple allocation that enables the spokes to be allocated to several hubs. The p-hub
median problem when the number p of hubs to be located is given otherwise the problem is hub location.
According to hubs capacities, the problem is said to be Uncapacitated (resp. capacitated) if hubs have
infinite (resp. finite) capacities. There are several other kinds of hub problems like the p-hub centre problem
where the objective is to minimize the maximum travel time between two demand centres [8], the hub arc
problem which aims to overtake the shortcoming of the p-hub median problem by introducing the bridges
arcs between hubs without discount factor [9], the dynamic hub location problem where either cost, demands
or resources may vary in the planning horizon [12]. Other constraints can be taken into account, such as,
hubs congestion, non-linear costs, stochastic elements, or vehicles routing constraints [14]. Reviews,
synthesis and classification on models and methods used in literature on different variants of the hub
location problem can be found in [4], [10], [19], [23], [30].

This paper deals with the Uncapacitated Single Allocation p-Hub Median Problem (USApHMP) for
which we propose a parallel GA approach on GPU. To our knowledge, this is the first parallel GPU
implementation for solving this problem. The remainder of this paper is organized as follows, related works
are provided in Section 2. In Section 3, we present the mathematical formulation of the problem. The
parallel GA approach is described in Section 4 followed by the GPU implementation in Section 5.
Computational results are reported in the Section 6 and finally Conclusion and perspectives are given in
Section 7.

This work was partially supported by the Region Normandy under CLASSE project.
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2 Related Works

O’kelly et al. [31] presented the first mathematical formulation for the USApHMP as a quadratic
integer program. They developed two heuristics and reported numerical results for CAB data (Civilian
Aeronautics Board) with 25, 20, 15 and 10 nodes. Campbell et al. [8],[9] presented different formulations for
the p-hub median problem, the uncapacitated hub location problem, the p-hub center problem and the hub
covering problem. Possible extensions with flow thresholds are also studied. They introduced the p-hub
median problem and proposed two heuristics to handle instances with 10-40 nodes and up to 8 hubs. Skorin-
Kapov et al. [35], developed different mixed 0-1 linear formulations for the multiple and the single p-hub
median problems and reported results on CAB data set. Sohn and Park [36], studied the special case of
single allocation two-hubs location problem. In this particular case, the quadratic program is transformed to
a linear program and to a minimum cut problem. Abdinnour-Helm [1] proposed a hybrid GA and tabu
search heuristic and reported the results on the CAB data set. Ernst and Krishnamoorthy [16], presented a
solving approach to the multiple allocation p-hub median problem and described how the approach can be
adapted to the single allocation case. Results are reported on AP data for multiple allocation case up to 200
nodes. Bryan [7] studied four hub-and-spoke networks. The first is concerned by capacitated network, the
second focus in minimum threshold model, the third determines the numbers of open hubs and the last
introduce flow-dependent cost function.

Horner and O’Kelly [21] proposed a model implemented in a GIS environment to prove that hub
networks may emerge naturally on traffic networks to take advantages of economies of scale. Labbé et al.
[26] studied the polyhedral properties of the single assignment hub location problem and proposed a Branch-
and-Cut algorithm for solving this variant of hub location. Chen [11] proposed a hybrid heuristic to solve the
USAHLP based on a combination of an upper bound method search, simulated annealing and tabu list
heuristic. Tests were performed on CAB data and AP data up to 200 nodes. Silva and Cunha [34] proposed
three variants of tabu search heuristics and a two-stage integrated tabu search to solve the problem. The
authors used the multi-start principle to generate different initial solutions which are improved by tabu
search. They solved larger instances with 300 and 400 nodes. llic et al. [22] proposed a general variable
neighborhood search for the USApMLP. They reported the results on AP and PlanetLab instances and
Urand instances up to 1000 nodes. de Camargo and Miranda [14], introduced the single allocation hub
location problem under congestion. A generalized Benders decomposition algorithm is proposed to solve AP
instances.

Maric et al. [27] proposed a memetic algorithm based on two local search heuristics. They tested
their algorithm on the well-known benchmarks and created larger scale instances with 52-900 nodes. They
gave the optimal solutions of AP data up to 200 nodes. Bailey et al. [5] proposed a Discrete Particle Swarm
Optimization (DPSO) to solve the USAHLP. They obtained the optimal solutions on all CAB data set and
on AP data up to 200 nodes. Damgacioglu et al. [13] introduced a planar version of the uncapacitated hub
single allocation hub location problem. This version has the particularity that a hub can be located anywhere
in the plan. They reported the results on benchmarks AP data instances. Ting and Wang [38] proposed a
threshold accepting TA algorithm to solve the USAHLP and reported results on the AP and CAB
benchmarks. Meier and Clausen [28] made use of the data set structures to propose new linearization of the
guadratic formulation of the problem. Indeed, the Euclidean distance in instances enabled to get linearization
of three classical and two new formulations of the single allocation problem. They obtained optimal
solutions on the AP data up to 200 nodes. Rostami et al. [33] introduced a new version of the USApHMP
where the discount factor between hubs representing scale economy in hub-hub arcs is replaced by a
decision variable. They proposed a Branch-and-bound algorithm and Lagrangian relaxation to compute
lower bounds. Recently, Abyazi-Sani and Ghanbari [2] proposed a Tabu Search heuristic for solving the
USAHLP and reported the results both on CAB data and AP data set up to 400 nodes. Kratica [25] proposed
a GA for solving the uncapacited multiple allocation hub problem. Binary encoding and adapted genetic
operation to this problem are used (only allocation hubs are given as the solution). He shows, under
experimental results on ORLIB instances with up to 200 nodes that GA approach quickly reaches all optimal
solution that are known. Topcuoglu et al. [39] present a GA approach to solve the uncapacited hub location
problem. We use their encoding and GA operators in our parallel GA. However, we generate initial solutions
differently from the middle nodes (rather than randomly initial solution as in [39]) with aiming to reach
more quickly the best solutions.
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Parallel GA implementations have been the subject of many works. There is extensive emerging
research in this field and several studies suggest different strategies to implement GAs on different parallel
machines [3], [18], [20], [24], [32], [36], [37]. There are three major types of Parallel GAs: (1) the master-
slave model, (2) island model and (3) fine-grained model. In the master-slave model, the master node holds
the population and performs most of the GA operations. The fitness evaluation, the crossover, the correction
and mutation operations on groups of individuals are made by each slave. In a coarse-grained model, the

ppprattios. isndiindegrdimedsewecdls)odash Humiie noally thes hasiagiebpajiuvldtiah andwedch noseaaes oBKx
communicate with several neighboring nodes. In this case, the population is the collection of all the
individuals in each node. There are conflicting reports over whether multiple independent runs of GAs with

sumallipopulatjergopadatéanh solutions of higher quality or can find acceptable solutions faster than a single

In this work, we propose GPU implementation of GA for solving the USApHMP. Several GPU
implementations of parallel GA are proposed in the literature. Among them, [6], [32] presented the mapping
of the parallel island-based GA on GPU. Our approach is similar to these implementations, nevertheless, the
migration step is replaced by a selection of the best solutions in each iteration, and the generation of the
initial solution is quite different (from the middle nodes).

3 Problem formulation

The USApHMP can be stated as follows: given N nodes 1...N, we try to locate p hubs and to find an
optimal allocation of spokes to hubs (one hub for each spoke) that minimizes the sum of the total flow cost.

Let Z;,, be the binary decision variable equal to 1 if the node i is assigned to the hub k, 0 otherwise, Y},
the flow between the hubs k and | originated from the node i, C; the unit cost for the flow in the arc
(i,k), 0,and D;are the originated and destined flow to the node i respectively.

The USApHMP is formulated as a MIP (Mixed Integer Program) by Ernst and Krishnamoorthy [15] as
follows:

minimize Z Z CikZix (xO; + 8D;) + Z Z aCyY iy €y
& Tk

l

L
Subject to:
ZZik=1,Vi€N )
k
Zo < Zuo Vi KEN 3)
Y- Yl =02y - ) Wiz, VikEN 0
z 7

l
> 2w =p ©
k

Zy €{0,1}, 1<i,k< N
Yiu=0, 1<ilLk<N
The objective function (1) minimizes the total cost of flow transportation between all origin-
destination nodes. Constraint (2) imposes to each spoke to be assigned to exactly one hub (additionally each
hub is allocated to itself). Constraint (3) requires that spokes will be assigned to hubs if the last one were
open. Constraint (4) is the flow conservation constraint and constraint (5) imposes to locate exactly p hubs.
The USApHMP is known to be NP-hard with exception of special cases that are solved in polynomial
time. When the set of hubs is fixed then the problem can be solved in O(n?) time using the shortest-path
algorithm [17].

4 Genetic algorithm description

Genetic algorithms are well-known search approaches that are applied in the wide field of
optimization. So, we propose a parallel GA to solve the USApHMP on GPU. Our implementation quickly
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reaches the optimal or best solutions for all benchmarks. In the next subsection we detail the encoding
chromosomes and how generate the initial solution of this problem.

4.1 Encoding and initial solution

Each solution of the problem is represented by two N-arrays H and S (this encoding was used in [39])
where:

e H represents hub locations i.e H[i]= 1 if node i is a hub, H[i]=0 otherwise.

e S represents the allocation of spokes (non-hub nodes) to hubs i.e S[i]= k where k is the assigned hub

for the node i. Additionally, each hub is allocated to itself.

In [39], the initial solution is generated pseudo randomly. Here, we proceed differently in order to
quickly achieve best hubs locations. So to build an initial solution with p hubs, we first compute the p
middle nodes i.e. the p hubs i with smallest distances d; to the other = a
nodes with d; = %; Cj; . Thus, the p initial hubs are chosen among
the p middle nodes. Then each node is allocated to its nearest hub. .

Numerical example: 1

The Fig .1 shows an example of a solution with 7 nodes, 2 hubs
(nodes 2 and 5). The nodes 1, 2 and 6 are allocated to hub 2 and the
other nodes are allocated to node 5. The encoding of this solution is
given in Fig. 1:

The initial population is generated by duplication of the initial solution by randomly permuting one hub with
one spoke.

Fig. 1: simple network encoding

4.2 Genetic operators

Random single point-crossover operator is used and infeasible offspring are corrected by a specific
operator to ensure validity of solutions, in terms of number of hubs by assigning the corresponding spokes to
their neighbor hubs. The permutation of two hubs is used as a mutation operator. These operators are noted
crossover(), correction() and mutation() respectively.

4.3 Solution evaluation

The following Eval() definitions (fitness) are used in the standard benchmarks to evaluate the solutions
quality. The fitness version for CAB data is given by:

(Zi Xk CiZix(XO; + 8D) + X Xk Xy aCyY i) * 1/ X X5 Wi
The fitness version for all data instances except PlanetLab and CAB data is given by:

1073( ; 2k CuZu(X0; + 8D) + ;XY aCyYig)

Note that the reason to multiply by 107 is to obtain the unit cost for flow transportation. We discover
this when we tried to reproducing optimal solutions and we confirm it by contacting M.R Silva [34].

5 GPU implementation

The Graphics Processing Units are now available in most of personal computers. They are used to
accelerate the execution of variety of problems. The smallest unit in GPU that can be executed is called
thread. Threads (all executing the same code and can be synchronized) are grouped into blocks of equally
sized and blocks are grouped in grid (blocks are independent and cannot be synchronized).

The memory hierarchy of the GPU consists of three levels: 1) the global memory that is accessible by all
threads. 2) the shared memory accessible by all threads of a block and 3) the local memory (register)
accessible by a thread. Shared memory has a low latency (2 cycles) and is of limited size. Global memory
has a high latency (400 cycles) and is of large size (4 GB for the Quadro). An entire block is assigned to a
single SM (Stream Multiprocessor). Each SM is composed of 32 streaming processors that share a limited
size shared memory. Several blocks can run on the same SM. Each block is divided into Warps (32 threads
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by Warp) that are executed in parallel. The programmer must control the block sizes, the number of Warps
and the different memories access.

A typical CUDA program is a C program where the functions are distinguished based on whether they
are meant for execution on the CPU or on the GPU. The functions executed on the GPU are called kernels
and are executed by several threads. We implemented the GA on GPU (Nvidia Quadro with 4 GB and 384
cores running under CUDA 7.5 environment) and we compare it to sequential implementations of best
known results existing articles in the literature in terms of time computations and on solutions quality. We
showed the effectiveness of our implementation on several instances of the USApHMP.

Fig. 2 gives the schema of the parallel GA implementation on GPU. The following parameters are used:
The number of node N, the population size n, the number of generations R, the number of iterations in the
inner-loop N1, the number of iterations in the outer-loop N2.

Global [
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= R S —
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o I Vb 3 6 6
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Fig. 2 The schema of the parallel GPU implementation of the GA.

We partition the GPU on R blocks each one is a gird n x 1 of threads. The master thread of each block is
the thread O and the global master thread is the thread O of the block 0. The block i, 0 <i < R stores in its
shared memory the data required to execute one GA starting from an ancestor individual P, (initial feasible
solution) generated as indicated in section 3 by the CPU and copied in the global memory of the GPU.

More precisely, let T}, ..., TRZ1 the threads of the block i. Starting from P, each thread T| generate a
new solution (individual) pi]- by applying a random permutation to P (initially, PL= P, and is updated
after each iteration of the inner-loop). P}, = p}), ..., p,_; is the initial population of the GA executed by the
block i. Note that the population size n is the same for all the blocks.

Now, we explain how the block i executes the GA. Each thread Tizj of the block i generate two children

namely ch; and ch, by crossowing the parents pizl-, pizjﬂthen Tizj applies the mutation to ch;to get a new
individual say cizj and Tzi]-Jr1 applies the mutation to ch, to get a new individual say ci2j+1. Next, each thread
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T} executes the correction operator to ensure the validity of the solution, verifies that all nodes are assigned
to the nearest hubs and finally it computes f} = Eval(c}).
Note that all cji and f ]‘ are stored in the shared memory of the block i. So, the master thread of block i selects

the individual ¢, with min; {f|} and updates the ancestor s, as ¢/, for the next iteration. This inner-loop of
GA terminates after N1 iterations (the same for all the blocks).

The Cji*, 0 <1 <R, are copied in the global memory and the individual C]-i:f with the mini{f]-i* IS selected as
the final solution or as the new value of the ancestor s, for the next iteration of the outer-loop. The process
is repeated N2 times.

The pseudo CUDA code executed by the CPU is the following:
1. Generate(,); //the ancestor individual
2. Copy Pyin the global memory of the GPU.
3. Define the blocks and the grid :
dim3 dimBlock(n,1);
dim3 dimGrid(R,1);
4. Launch the kernel GA(®,) : GA<<<dimGrid,dimBlock>>>(P,);
5. Read the solution from the global memory.

6 Computational results

6.1 Benchmarks used

We used four types of data: CAB, AP, PlanetLab and Urand :
- CAB (Civilian Aeronautic Board) data set is set of instances introduced in [31] based on airline

passenger flow between 25 US cities. It contains distances (which satisfy triangle inequality) and symmetric
flow matrix between the cities. The size instances are of 10, 15, 20 and 25 nodes. The distribution and
collection factors 6 and y are equal to 1.

- AP (Australian Post) data set are real-world data set representing mail flows in Australia. The
distribution and collection factor & and x equal 3 and 2 respectively while the discount factor a takes 0.75 for
all instances. The mail flows are not symmetric and there are possible flows between each node and itself.

- Urand data set are random instances up to 400 nodes generated by Meyer et al. [29]. The instances with
1000 nodes were generated by llic et al. [22]. Nodes coordinates were randomly generated from 0 to 100000
and the flow matrix was randomly generated.

- The PlanetLab instances are node-to-node delay information for performing Internet measurements
[22]. In these networks, x = a. = & = 1 and the distance matrix doesn’t respect triangle inequality.

6.2 Best known solutions vs. our results

We report the results for the three data set introduced above. We compare our results with those of llic et
al. [22] in terms of computing time. Note that in our GPU implementation, the number of blocks is the same
for all problems. So time compute of all problems is the same. We use shared memory to reduce the time
computation. However, the time transfer between the CPU and GPU varies according to the number of
nodes. Throughout the rest the given times are the time of the complete program (calculation of the initial
solution, data transfers between the CPU and GPU, calculation of the solution).

For the CAB data set, we obtained the optimal solutions in all instances (up to 25 nodes) in a short
computing time. Since solving these instances is not anymore a challenge (all instances are solved to
optimality by previous work), we report only our computing times for solving these data instances. We
studied the scale economy generated in hub-hub arcs and its relationship with initial and final costs which
represent the collection and distribution cost. Typically, a hub-and-spoke transportation chain is composed
by tree segments: the first and the third called pre and post haul respectively are the initial and final arcs
while the second is the long haul segment (hub-hub arcs). In CAB data, we can express the cost from an
origin i to a destination j through the two hubs k and | as: Cf‘]-‘ = xCiy + aCy; + 8Cj where a. < 1 represents
the scale economy generated by consolidating flows between hubs while y and & represent the distribution
and the collection costs and are often greater than 1. A question is how distribution and collection cost
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influence the scale economy thresholds? In fact, as illustrated in Fig. 3, the average inter-hub distance
changes as we vary the distribution and collection factors. We can see clearly that the long-haul relevance
threshold is lower when the distribution and collection costs are lower.
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Fig. 3 The average inter-hubs distance

The following notations are used in Tables 1-5:

N: nodes number in the instance.

p: hubs number.

Best Sol: the Best solution if it is known otherwise “-’is written.

GPU Sol: the best solution obtained by GPU, with mark “opt” when solution in GPU is the optimum
for the current instance.

Topr : the best time (in seconds) for the best solution.

Tepu : the time (in seconds) for our GA parallel.

These tables give a comparison of our results to the best known results for USApHMP in the benchmarks
previously introduced. As shown in Table 1 we obtained optimal solutions for all the AP data instances in
time < 7.42 s. Note that, the results using AP data instances for the p-hub median variant with 300 and 400
nodes are not reported before in the literature and we think that finding exact solutions using standard
solvers (CPLEX, Gurobi...) is a serious challenge. So, we can think that our results are since now the best
solutions for 300 and 400 nodes instances. We report our results for PlanetLab instances in Table 2. It is
clear that our approach outperforms those of literature [22] either in cost and computing time. The state of
the art solutions given in [22] reports the results for 12 instances. Each instance is characterized by nodes

number n and by p hubs to be located with p ~v/n.

Table 1: Results on AP data

N p Best Sol GPU Sol Tepu N p Best Sol GPU Sol Tepu
10 2 167493.06 opt 0.007 100 5 136929.444 opt 1.310
3 136008.13 opt 0.012 10 106469.566 opt 1.310
4 112396.07 opt 0.014 15 90533.523 opt 1.49
5 91105.37 opt 0.019 20 80270.962 opt 1.63
20 2 172816.69 opt 0.020 200 5 140062.647 opt 3.602
3 151533.08 opt 0.031 10 110147.657 opt 3.722
4 135624.88 opt 0.039 15 94459.201 opt 3.783
5 123130.09 opt 0.043 20 84955.328 opt 3.841
25 2 175541.98 opt 0.033 300 5 - 174914.73 5.631
3 155256.32 opt 0.045 10 - 134773.55 5.711
4 139197.17 opt 0.050 15 - 114969.85 5.896
5 123574.29 opt 0.061 20 - 103746.44 5.876
40 2 177471.67 opt 0.063 400 5 - 176357.92 6.741
3 158830.54 opt 0.110 10 - 136378.19 6.846
4 143968.88 opt 0.167 15 - 117347.10 7.102
5 134264.97 opt 0.213 20 - 104668.27 7.423
50 2 178484.29 opt 0.092
3 158569.93 opt 0.163
4 143378.05 opt 0.250
5 132366.953 opt 0.271
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Table 2: Results on PlanetLab

Instance N p Best Sol GPU Sol Toer Tepu
01-2005 127 12 2927946 2904434 148.954 0.47
02-2005 321 19 18579238 18329984 462.790 6.95
03-2005 324 18 20569390 20284132 543.844 7.54
04-2005 70 9 739954 730810 0.682 0.28
05-2005 374 20 25696352 25583240 622.612 8.32
06-2005 365 20 22214156 22191592 581.776 7.94
07-2005 380 20 30984986 30782956 546.688 8.47
08-2005 402 21 30878576 30636170 637.686 8.74
09-2005 419 21 32959078 32649752 684.900 9.34
10-2005 414 21 32836162 32687796 731.930 9.12
11-2005 407 21 27787880 27644374 588.344 9.22
12-2005 414 21 28462348 28213748 680.382 9.18

Table 3: Results on Urand instances

N p Best Sol GPU Sol Teru N p Best Sol GPU Sol Tepu
100 2 36930.31 opt 0.0375 300 2 328702.42 opt 0.2215
3 34532.88 opt 0.0265 3 308765.08 opt 0.9175
4 32608.28 opt 0.0245 4 293636.81 opt 1.6100
5 31107.70 opt 0.1135 5 282116.88 opt 0.5060
10 27058.40 opt 0.4695 10 251393.30 opt 12.8275
15 25408.56 opt 2.7925 15 236781.77 opt 27.6640
20 24377.65 opt 7.3640 20 228005.19 opt 153.2925
200 2 148235.45 opt 0.0175 400 2 579982.35 opt 0.1735
3 139223.25 opt 0.0575 3 543717.32 opt 1.7115
4 132676.89 opt 0.3920 4 519217.48 opt 2.2275
5 127220.02 opt 0.6895 5 501421.52 opt 1.4730
10 112539.21 opt 4.5300 10 446361.10 opt 16.8700
15 105690.52 opt 37.3460 15 422284.78 opt 111.4295
20 102022.32 opt 68.6685 20 407110.51 opt 228.8615
Table 4: Results on Urand large instances
N p Best Sol GPU Sol Topr Teru
1000 2 198071412.53 8184986.50 1.7245 9.321
3 169450816.35 7024184.00 8.1550 9.785
4 150733606.87 6184749.01 2.2240 10.431
5 142450250.26 5860994.06 58.6070 10.89
10 114220373.07 4752317.00 187.8385 13.7
15 - 4228256.88 - 15.23
20 198071412.53 3928617.48 403.4280 17.923
Table 5: Results on larger Urand instances (generated by us)
N p GPU Sol Teru N p GPU Sol Teru
1500 20 454787506 196 4000 20 3234999192 3076
30 407155164 286 30 2983891783 3276
40 380114045 423 40 2769550514 3365
50 363586538 574 50 2644606684 3648
2000 20 805749722 477 5000 20 5085803132 4662
30 733375448 580 30 4656787498 4720
40 686515363 714 40 4353561395 4996
50 655938000 965 50 4143849388 5112
3000 20 1804950952 1157 6000 20 7398401957 5614
30 1642145354 1544 30 6675723961 5748
40 1538548764 1869 40 6293053841 5964
50 1468780124 2086 50 5999780197 6212
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The Table 3 reports computational results for the Urand instances. We can see that our parallel GA obtained
the best solutions for instances up to 400 nodes and outperforms those of Ilic et al., [22] for instances with
1000 nodes as illustrated in Table 4. Concerning the computing times, our approach is faster and gets the
solutions in a time lapse less than 18s for all instances while the best-known time reaches 7 minutes. A
remarkable thing is that the time execution gap of our algorithm with llic et al., [22] algorithm is important
for large values of p. We report in Table 5 results for larger instances generated by us using the same
generation procedure as for the Urand instances as stated in [29]. These new challenging instances consist of
large networks up to 6000 nodes that have not been solved before.

7 Conclusion and perspectives

We developed a parallel GA for the Uncapacitated Single Allocation p-Hub Median problem and we
implement it on GPU. We showed the effectiveness of our implementation on the well-known benchmarks
for this problem. Indeed, our approach improved the best known solutions in cost and computing times for
well-known benchmarks instances with up to 1000 nodes. Also it allowed solving large instances problem
unsolved before. Further, we work on the design and implementation of an exact parallel tree-based
algorithm to solve the studied hub problems as these algorithm structures seems to be suitable for the GPU
architectures. Another issue is to tackle other versions of the hub problem especially capacitated case,
multiple allocation variants and other more specific problems (with congestion, with vehicles routing
constraints, etc.). Other metaheuristics in particular those based on one solution may be studied from the
parallelism viewpoint.
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1 Introduction

The knapsack problem (KP) is a NP-hard combinatorial optimization problems used to model a
wide variety of real life and literature problems[2]. The purpose is to maximize profit while having
only limited resources. This problem generalizes different variants of other problems [4][5]. The
multiple choice multidimensional knapsack problems (MMKP) are particular variants of the KP
considered as one of the most complex member of his family [3][4].

Consider a set of item groups. Each item has a particular value in the objective function and
requires a certain amount of resources. The MMKP consist to pick exactly one item from each
group in order to maximize the total profit value of the pick without exceeding the capacities of
the knapsacks [4]. Formally, the MMKP can be stated as follows :

maximise Y i, Z;”Zl ijxzj
Subject to E?:l Z;:l A5 T45 < bk7 k= 1, e,
n; .
Zj‘zl zij=Lli=1,..,n

Tij € {07 1},2 =1,...,n,7 =1, ey M5

where b = (b!,b%,...,b™) is the capacity vector of the multi-constrained knapsack resources, and
a set of n disjoint item groups N = (N1,..., Nt .., N") where each group i,i = 1,...,n has n;
items. Each item j,j = 1,...n; , of the i*" group has a non-negative profit value cij , and requires
an amount of resources represented by the weight vector a;; = (allj, a?j, e afj). Note that weight
terms afj (with 1 <k <m;1<i<mn;1<j<n;) are non negative.

The appearance of new architectures such as graphical processing units (GPUs) seems particu-
larly interesting to reduce resolution time. The disjoint groups of MMKP allow the decomposition
of the initial problem in several sub-problems. Each one will be therefore formed by a set of groups
of the initial problem. Each set is considered as an MMKP. In this paper, we propose a new ap-
proach to solve the MMKP using CPU-GPU architecture using CUDA. To do this, we apply an
efficient parallel implementation of the branch and bound algorithm developed by Hifi and Sbihi
[1] on a CPU-GPU. For each sub-problem we associate a new thread to solve by Hifi and Sbihi s
algorithm [1]. Therefor, we obtain a final solution with a reasonable quality that can be improved
by using a local search.

A strategic management of GPUs memories and synchronization between GPU threads decreases
significantly GPU-CPU communications. Such a process could make the approach solve larger sizes
of instances.
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2 Method description

First of all, the initial problem is decomposed into a set of sub-problems. The latter are pooled
into different groups using a classification method. In a second step, and based on the amount of
resources used by the sub-solutions, the available resources will be distributed on different sub-
problems. Such distribution will guarantee to increase the quality of final solution.

In the third step, all instances will be therefore solved in parallel using an exact solution algorithm.
Using such algorithms gives an optimal solution to each sub-problem. Hence providing a good so-
lution to the initial problem. However, this solution is not necessarily optimal.

Therefore, to improve the solution obtained in third step, a second distribution of the remaining
resources is performed. In fact, the sum of the remaining resources left by the solved sub-problems
that are higher than a predefined threshold will be redistributed among the other sub-problems
whom left fewer resources. These sub-problems will be subject of a second resolution using the new
redistributed resources in order to improve their results.

The next algorithm makes up the framework of our method.
/* Initialization phase */
1. Decompose the initial problem into a set of sub-problems.
1.1. Divide the groups of items into several class of groups.
1.2. Assign each class of groups to a sub-problem.
1.3. Distribute the available resources between the different sub-problems.
/* Parallel resolution phase */
Repeat
2. Solve all sub-problems in parallel using Branch and Bound algorithm [1].
2.1. Copy data from host to device.
2.2. Solve each sub-problem with the algorithm approach using the best-first search strategy
[1].
2.3. Copy the solutions of the sub-problems from device to host (Profit Solution = Sum of
the profits of the sub-problems).
/* Intensification phase */
3. Repeat
3.1. Redistribute the remaining resources to the sub-problems which have used much of
their resources.
3.2. Re-solve these sub-problems in parallel.
Until no improvements found
4. Intensification phase around the current solution to improve it (swap move [5]).
/* Diversification phase */
5. Swap groups between the sub-problems, which have used less of their resources.
Until the stopping criterion is met.

Our parallel approach is evaluated using medium size and large size benchmarks [7]. It improves
the best literature known results and provides solutions with a total value on average equal to
1% close to the optimum and better performance than those obtained by Chao Gao et al. [6] and
htiouech et al. [5].

Additionally, we define a new set of very large benchmark size (up to 64000 variables). Preliminary
results show that our approach is always able to find very good solutions quality for new instances
in a reasonable time of execution (less than 150 seconds).
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Abstract. Genetic Algorithms (GA) have been effective in solving many search and opti-
mization problems. Software testing is one field wherein GA have received much attention to
solve the problem of test-data generation. However, few works analyze this problem to see
whether GA are appropriate. Schema theory is an analysis tool that theoretically explains
how and in which classes of problems GA work well. In this paper, we use schema theory to
analyze the problem of test-data generation. Based on this analysis, we propose an enhanced
GA framework for software test-data generation. It uses the schema analysis to identify per-
formance schemata. To preserve these schemata during the GA evolution phase and maintain
their diversity, our framework provides a new selection strategy called pairwise-selection as
well as adaptive crossover and mutation operators. We evaluate our framework on a set of
synthetic programs and compare it to the well known test-data generation framework, Daim-
lerChrysler system. We observe that a high branch coverage was obtained and the number
of fitness evaluations was significantly reduced.

1 Introduction

Genetic algorithms (GA) are a family of global search algorithms that were initially proposed by
Holland in the 1970s [1]. Genetic algorithms are often used as an optimizer, although they are
becoming more widely used for practical problem solving and for scientific modeling. Evolutionary
testing is one field wherein GA has received much attention [2-7].

In general, a search algorithm faces challenges in a large search space when the landscape of
its fitness function contains many local optima and it is insufficiently informed. To tackle these
challenges to GA for some classes of problems, Holland [1] proposed schema theory to analyze the
problem and extract additional pieces of information and exploit them while the search goes on. On
such a class of problems, GA guided by a fitness function based on schema theory is theoretically
predicted to outperform simple GA and other search techniques, such as hill climbing. The schema
theory or building-blocks hypothesis states that a GA can outperform other search algorithms if the
chromosomes are distinguishable (can be represented by distinct schemata) and the combination
of partial schemata (lower-order building blocks) can construct higher-order schemata [1,8].

However, despite the theoretically predicted advantage of GA based on schema theory analysis,
its application to evolutionary testing poses additional challenges. The schema theory analysis as
defined by Holland is not directly applicable to evolutionary testing and some adaptations of the
original schema theory analysis exist [5]. Also, to further increase its performance and to benefit
from the power of schema theory analysis, in addition to an adequate schema theory form, the GA
evolution operators must preserve schemata and maintain their diversity [9].

In this paper, we propose an enhanced GA framework for evolutionary testing (EGAF-ET)
based on schema-theory analysis. We show that testing chromosomes are distinguishable accord-
ing to the subset of individual conditions that they satisfy and may be classified in schemata.
Conditional expressions of branches are used to define a general set of schemata for a test target.
According to the proposed concept of schemata, we define a general expression of an evolutionary
testing fitness function. After adapting the general form of schema theory for evolutionary testing,
we identify structures and properties associated with better performance by schema analysis, then
incorporate them in the evolution phase with all fundamental GA operators (selection, crossover,
mutation). We report on the comparison of a simple GA framework for software test data genera-
tion and our EGAF-ET and show that the latter outperforms the former: EGAF-ET significantly
reduces the number of evaluations needed to reach a given branch and achieves higher branch
coverage.
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Table 1: A set of possible schemata for a test target that is control dependent on three branches (b1, bz, b3).

Schema|Meta-constraint Pattern| Order
$11 {(z1, 2, x3)|by is satisfied} by x * 1
S12 {(z1, 2, x3)|bo is satisfied} * by x 1
s13 |{(z1, @2, x3)|bs is satisfied} * % b3 1
s21 |{(z1, @2, 3)|b1 A by is satisfied} by by * 2
so2  |{(w1,®2,w3)|b1 A bs is satisfied} by * b3 2
s23  |{(w1,2,23)|b2 A b3 is satisfied} * by bz 2
ss1 |[{(w1,22,23)|b1 Aba A cs is satisfied}| by b2 b3 3

The remainder of the paper is organized as follows: Section 2 describes our framework and
shows how to use schema theory on evolutionary testing. Section 3 we present experimental results
comparing a simple GA framework with our EGAF-ET. Section 4 summarizes related work. The
conclusions and directions for future work are in Section 5.

2 Schema Theory for Test-data (Generation

Test-data generation aims to generate an input vector (i.e., individual) that satisfies a set of branch-
conditions leading to a test target. Its search space can be split into subspaces where each subspace
represents the set of individuals satisfying a given subset of branch-conditions. Thus, individuals
are distinguishable by the subset of branch-conditions that they satisfy. Therefore, a schema can
be defined as a set of individuals that satisfy a meta-condition (i.e., a conjunction of branch-
conditions) and its order is equal to the number of conjuncts. An individual ¢ is an instantiation
of a schema if and only if 7 satisfies its meta-constraint. Thus, the set of schemata that represent a
problem of test-data generation is all possible branch-conditions whereon the test target is control
dependent. For example, given an Unit-under-test (UUT) that takes three input arguments x1, x2,
and x3, a test target ¢ control dependent on three branches by, b, and bz, can be modeled by a
subset from the set of schemata given in Table 1. Each schema represents an exponential number
of sub-schemata, where a sub-schema is defined by the meta-constraint of the main schema while
fixing one input argument to a value from its domain.

A schema is a hierarchical structure: intermediate-order schemata (e.g., s21, S23) play the role
of stepping stones to go from lower-order schemata (e.g., s11, s12) to higher-order schemata (e.g.,
s31) [10]. The hierarchical structure is one essential feature for the building-blocks hypothesis, i.e.,
partial schemata construct higher-order schemata. Thus, individuals from a schema having a fitness
value higher than the average are likely to produce fitter individuals [1]. Therefore, a fitness function
based on the defined schema may work well under certain circumstances. Based on this schema,
we can define different fitness functions for evolutionary testing. Mitchell et al. [10] termed this
class of fitness functions Royal Road functions.

2.1 Royal Road Function

To define a royal road function for evolutionary testing, we use the concept proposed by Jones [11].
The fitness value is composed of two scores called PART and BONUS. PART considers each
building block individually in such a way that each building block receives a fitness value. BONUS
rewards optimal building blocks that reach their optimal fitness value. Because we define a building
block by a branch-condition, we can define PART by a straightforward assignment of its normalized
branch distance () [12]. If, for some reason, an exact evaluation of a building block is impossible
(e.g., a non-executed branch and its expression is impossible to evaluate symbolically), then its
PART can be overestimated by assigning it the value 1. In this case, if we ignore the BONUS
(e.g., BONUS=0) then we fall on the Approach Level fitness function (faz) [7] and Symbolically
Enhanced fitness function (fsg) [13] expressions. In previous work [14], we studied branch-hardness
(i.e., the difficulty to satisfy a branch) and showed that the Difficulty Coefficient (DC') is a good
corrective metric to get comparable branch distances among different branches. In this paper,
we use this metric to adjust branch distances. Using this adjustment, we fall on the Difficulty
Coefficient fitness function (fpc) expression [14].
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BONUS allows the revised class of royal road functions to outperform the simplest versions of
the royal road functions and other search algorithms. Thus, it is key to performance and should not
be ignored. In [11], Jones defines BONUS as a way to classify individuals into distinct levels (i.e.,
order of schema). The BONUS must be a distinctive value, i.e., from the overall fitness value we can
distinguish between individuals from different order of schemata. Thus, BONUS must be greater
than the maximum value that an individual can have from the sum of all PARTSs. Because we
define PART by a normalized distance that is always upper-bounded by 1, BONUS can be defined
by the number of branches. To take into account the branch-hardness, we use the Difficulty Level
(DL) metric [14] to reward an optimal building block.

In general an evolutionary testing fitness function is a minimization function, so the BONUS of
each block must decrease its objective. By default, the objective value must contain the maximum
summed BONUS that may appear in an objective value and when a building block reaches its
optimal value, BONUS is decreased. Because the optimal fitness value of a building block is equal
to 0, a simple equivalent expression may be obtained by penalizing non-optimal building blocks
instead of rewarding optimal building blocks. Therefore, an unsatisfied branch is penalized by its
BONUS, so a minimization royal road function for evolutionary testing can be expressed as follows:

fre(i,C) = (BONUS(C) +PART(i,c)>
ceC’

-y (DL(C, ) +n(5-DC(c)))

ceC’

Where C is the set of branches whereon the test target is control dependent; C’ is the subset of C that
contains unsatisfied branches by i; DL(c,C) and DC(c) as are defined in [14].

In evolutionary testing, the level of dependency between building blocks may be different from
one instance to another. An instance may contain a set of strongly dependent building blocks, while
another may contain a set of building blocks that are weakly dependent or totally independent.
Because a hierarchical structure must take into account the conflicts among schemata, the inter-
dependency between building blocks, and intra-dependency within building blocks [15], we cannot
enforce a general subset of schemata (i.e., a plan to follow) for all instances of the problem of
test-data generation.

The proposed formulation of the fitness function does not predict an exact subset of schemata.
This is an advantage because it can deal with any instance of the problem of test-data generation,
but, at the same time, this is an inconvenience because its landscape may significantly change
from one instance to another. Therefore, as any general fitness function, the proposed one may
be deceptive in some instances of evolutionary testing. The fitness function alone cannot perform
well on every instance of evolutionary testing. To further increase its power, in addition to a good
fitness function, GA must exploit features associated with good performance [1]. In Holland’s words
“unexploited possibilities may contain the key to optimal performance, dooming the system to
fruitless search until they are implemented. There is only one insurance against these contingencies.
The adaptive system must, as an integral part of its search of “(schemata)”, persistently test and
incorporate structures properties associated with better performance.”

Therefore, in the following subsections, we propose adaptive GA operators that use schema
analysis to detect and exploit some features related to evolutionary testing performance.

2.2 Pairwise Selection Operator

The hope of a GA is finding the desired schemata at each generation. A distributed population
on schemata may answer this hope. Because fitter individuals may be from a same schema, the
selection operator must balance between fitness, diversity, and schemata. In the literature, there
are several selection operators that balance between fitness and diversity [16]. Pairwise-Selection
is a selection strategy that we propose to boost the selection by taking into consideration the
diversity in terms of schemata by identifying schemata and distinguishing between them. From the
overall fitness value, it may be possible to know the order of schemata, however it is impossible to
identify an exact schema because many schemata may have the same order.

In evolutionary testing, we know a priori the optimal value of a fitness function (generally branch
distance is equal to 0), whence the schemata identification is possible by storing the individual
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foo(int i,int j,int k,int 1) { b b b
1 2 3

1
2 int x=0;

3 if(1>0) //b1 i| 1 1 0
4 x=3j;

5 if (x>0 && k>0) //ba .

6 if1>0) //bs jl] o 110
7 return 1;

8 k| O 1 0
9 return 0O;

o} 1o |0 |1

Fig. 1: foo function Fig. 2: influence matrix for foo function

fitness value of each building block (branch distance of each individual branch) and using them
during the GA evolution phase. A schema detector can be defined as a binary vector derived from
the schema pattern by replacing the asterisks by 0 and constraints by 1. The scalar product of a
branch distance vector and detector vector is equal to 0 if and only if the individual is an instance
of the schema. Further, the branch distance vectors may be a good mean to measure the similarity
or the distance between individuals in terms of schemata. The similarity between two individuals
is equal to the scalar product of their branch distance vectors. The similarity is maximal if the two
individuals are instances of the same schema, it is minimal if the two individuals complement each
other (it is equal to 0).

The pairwise selection combines two selection strategies to select individuals in a pairwise
manner. The first individual is selected according to a selection strategy that takes in consideration
the fitness and the population diversity. The second individual is selected using a selection strategy
that focuses on the diversity in terms of schemata. The first strategy sorts individuals according
to a linear ranking method [17, 18], after which the first individual is selected using stochastic
universal sampling [18,19]. The second individual is selected to increase the likelihood of getting
a complement of the first individual using a tournament selection [16] based on lowest similarity
and worst fitness in case of ties.

Pairwise selection has a good likelihood of diversifying the population in terms of schemata.
Furthermore, it couples two individuals that have a potential to generate fitter offspring.

2.3 Crossover and mutation Operators

It is well known that crossover and mutation operators disrupt schemata in a population. The
schema theorem shows that crossover and mutation rates are the main source of the loss of
schemata [1]. Those rates are constant in evolutionary testing and are randomly applied without
any consideration for schemata. Adaptive rates may help to reduce losses and make evolutionary
testing more effective and efficient. Because crossover and mutation operators perform on genes,
comparison in terms of genes’ performances is a natural way to define adaptive crossover and
mutation operator. The contribution of each gene to the fitness may be an adequate indicator to
adapt those two operators. We propose a schema analysis to identify the influence of each input
variable on each schema.

We say that an input variable v influences a schema s if v influences any basic building-block
component in s. Because a basic building block is defined by an individual branch, we keep Korel’s
definition of influence [20] and we extend it with indirect influence. A variable v indirectly influences
a branch b if b is influenced by a variable w while a definition of w is in an execution block B and
the execution of B depends on v value. Fig. 1 is a sample source code wherein the input variable
i indirectly influences the conditional statement at Line 5.

The schema analysis generates an influence matriz that summarizes input variables influence
on basic building blocks. An influence matriz is a UUT matrix that reflects the dependency rela-
tionship between conditional statements and input variables: its lines are input variables and its
columns are conditional statements. A cell [v,¢] of an influence matrix is equal to 1 if the condi-
tional statement ¢ depends in any way on input variable v, else it is equal to 0. Fig. 2 presents the
influence matrix for foo function.

The schema analysis is a sort of data flow analysis. With a slight modification to a data flow
analysis algorithm, we can generate the influence matrix. In this paper, we assume that the control
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flow graph does not contain cycles (loops are unfolded kpath times) and use an adapted version of
the Basic Reach Algorithm [21] to generate the influence matrix.

Using the influence matrix, an estimated input variable contribution can be determined in each
of the branch fitness. We assume that input variables involved in a branch contribute equitably to
its fitness value. Therefore, a fitness value can be assigned to each input variable by summing its
contributions among all branches involved in an influence relationship.

Adaptive Crossover Operator. The aim of any crossover operator is generating at least one
offspring which is fitter than each parent. To achieve this objective a crossover operator needs to
detect the origin of the fitness in each parent and exploit it to get fitter offspring. An adaptive
uniform operator can be developed for this purpose that focuses only on one offspring wherein
the fitter genes are recombined. The adaptive uniform operator generates a main offspring and a
secondary offspring. The main offspring receives from the first parent all genes that have reached
the optimal fitness value then the remaining genes are chosen from both parents according to fitness
values of genes (i.e., the fitter gene of both genes is chosen). The secondary offspring receives each
gene from one parent with an equal probability. Despite genes being linked by building blocks and
the latter not being necessary independent, this adaptive uniform crossover has a good likelihood
of making a fitter offspring and reducing the probability of losing schemata.

Adaptive Mutation Operator. Two features define a mutation operator: the probability of
changing a gene and the way a gene is changed. A mutation operation can be considered successful
if the new offspring is fitter than its parent. To achieve this a mutation operator needs to detect
the sources of weakness from the fitness of the parent and change them in an adequate way. An
adaptive mutation operator can be developed to answer this. Instead of using an equal probability
1/ to change each gene, the adaptive mutation operator uses a probability computed in terms of
the fitness value scored by each gene. It makes a distinction between two groups of genes: optimal
genes that have the optimal fitness value (0) and non-optimal genes that do not yet reach the
optimal fitness value. Only genes from the second group are subject to mutation with an equal
probability @, where |Sg| is the number of genes in the second group (non-optimal). Thus a
mutated value is computed in terms of the min and the maz of fitness values of branches (building
block) wherein the input variable (gene) is involved. A value r is randomly selected from one of
three intervals {[1, min], [min + 1, maz], [maz + 1, uBound]} with probabilities {0.6,0.3,0.1}, then
this value is added or subtracted to the current gene value. A minimum width is required for each
interval (e.g., for integers each interval must contain at least 50 values otherwise the interval is
modified to contain this number starting from its lower bound).

3 Empirical Study

The main goal of our empirical study is to compare our proposed enhanced GA framework against
a simple GA and to analyze its impact in terms of effectiveness and efficiency on evolutionary
testing. Evolutionary testing is considered more efficient if the enhanced GA framework reduces
the number of evaluations to achieve a given coverage; it is considered more effective if the enhanced
GA framework covers more targets. To get a more revealing analysis, we evaluate separately the
four components in our enhanced GA framework: the royal road function of evolutionary testing,
the pairwise selection, the adaptive crossover operator, and the adaptive mutation operator. to
determine the contribution of each component in the enhanced GA framework and to analyze the
following questions:

— (RQ1): Validation of evolutionary testing royal road function. Can an evolutionary
fitness function expressed according to the schema theory make evolutionary testing more
efficient or effective? This shows the impact of a fitness function expressed according to the
schema theory;

— (RQ2): Validation of schemata diversity hypothesis. Can the pairwise selection make
evolutionary testing more efficient or effective? This shows the impact of maintaining the
population diversity in terms of schemata;
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— (RQ3): Performance of proposed adaptive crossover. Can the adaptive crossover oper-
ator that combines fitter genes enhance evolutionary testing in terms of efficiency of effective-
ness? This shows the effect of preserving schemata by exploiting the sources of performance;

— (RQA4): Performance of proposed adaptive mutation. Can the adaptive mutation op-
erator that assigns high probability to “weaker” genes enhance evolutionary testing in terms
of efficiency of effectiveness? This shows the impact of incorporating structures and properties
associated with weaker performance to preserve schemata and mutate individuals.

To ensure that we compare, indeed, with a good implementation od simple GA a careful im-
plementation of the DaimlerChrysler system for evolutionary testing (DCS-ET) [6,7] was set up
by using the evolutionary computation for Java (ECJ) system [22]. We choose ECJ because it
is founded on the same principles as DCS-ET: both systems support breeding based on multi-
populations, or Breeder Genetic Algorithm [23]. The ECJ features make reimplementing DCS-ET
easy. DCS-ET has been largely studied and reimplemented in the literature and it is always consid-
ered as the state of the art [5]. In the next paragraph we give a brief description of DCS-ET [5,7].

The population contains 300 individuals that are uniformly distributed over six sub-populations.
All sub-populations are evolved in parallel separately according to the following process: (1) Eval-
uation: according to a fitness function, a score is assigned to each individual; (2) Selection: indi-
viduals are selected using a linear ranking [17, 18] with a selection pressure equal to 1.7 followed
by stochastic universal selection [18,19]; (3) Crossover: parents are recombined by using a discrete
recombination [23]; (4) Mutation: offsprings are mutated by the breeder genetic algorithm muta-
tion strategy [23]; (5) Reinsertion: an elitist reinsertion strategy keeps the top 10% of the current
population; (6) Random Exchange: every 20 generations sub-populations randomly exchange 10%
of their individuals with one another; (7) Populations competition: every four generations, the
populations are ranked according to their progress in terms of performance (mean fitness) and the
size of each sub-population is updated with weaker sub-populations losing individuals in favor of
stronger ones.

We enhanced DCS-ET with frg, pairwise selection, adaptive crossover, and adaptive mutation
operators to get a first version of our framework EGAF-ET.

The study was performed on 440 synthetic test targets that were randomly generated. A syn-
thetic test target is a simple Java program that contains a set of nested branches to be satisfied
(i.e., only the deeper branch is targeted). The search space and the number of nested branches
are the main factors in determining the difficulty of an evolutionary testing problem. The search
space grows exponentially with the number of input variables. To get simple Java programs that
represent different levels of difficulty the number of input variables is varied from 2 to 9 and each
test target contains at least a number of nested branches equal to the number of input variables
and at most is equal to double the number of input variables. For each combination of the number
of input variables and number of nested branches 10 simple Java programs are generated. We
define each input variable as an integer that takes its value from the large domain [273% 230]. Each
simple Java program denotes a separate search problem for which the size of the search space
approximately ranges from 22 to 2279, To get realistic test targets, every test target is generated
carefully, branch by branch. Every branch must: 1) keep the test target feasible; 2) involve two
input variables (80%) or an input variable and a constant (20%); 3) not be implied by the current
test target.l

Each search for test data that meets a test target was performed 20 times. This repetition allows
reducing the random aspect in the observed values. A set of 20 random number seeds was used
to seed the random number generators. If test data was not found after 30,000 fitness evaluations
for both DCS-ET and EGAF-ET, the search was terminated.

Table 2 summarizes the results of 8,800 executions for each combination of framework, BONUS,
and PART. An execution is considered successful if it could generate a test datum. To compute a
maximum coverage (Max. Cov.), a branch is considered covered if test data were found during at
least one of the 20 executions. To compute a average coverage (Ave. Cov.), a branch is considered
covered if test data were found during at least teen of the 20 executions. The frr with PART equals
to the adjusted branch distance (§ - DC) outperforms frr with the simple branch distance ().
Thus in our framework (EGAF-ET) frr with BONUS different from zero works better than with

! Benchmarks are available at http://www.crt.umontreal.ca/~quosseca/fichiers/23-Metal6Benchs.
zip
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Table 2: Results of different expressions of the evolutionary testing royal road function on both frameworks.

frn SUCCESS | EVALUATIONS | Max. Cov. | Ave. Cov.
BONUS| PART |DCS|EGAF DCS| EGAF|DCS|EGAF|DCS[EGAF
0 n(5) |5,084] 8,511|175,619,700|43,269,900|78.18] 99.77|58.63| 97.27
n(6 - DC)|5,262| 8,521|173,014,800|42,747,300|80.45] 99.09|60.00| 97.72

(o n(8) |5,048] 8,515|175,827,000]43,021,20077.72] 99.54|56.59| 97.27
n( - DC)|5,248| 8,528|173,048,400|42,644,100|78.86| 99.77|58.86] 97.50

DL n(d) |5,037] 8,547|176,110,800|41,990,700|76.59| 100.00|58.18] 97.72
7(5 - DC)|5,166] 8,556|175,356,000|41,851,500]79.09] 100.00|59.31] 97.72

100

80 —

60 —

% Coverage

40

20 +

’ --- Pairwise Selection
—— Adaptive Crossover
Adaptive (probability) Mutation

0 — Adaptive (value) Mutation (EGAF-ET)
T T T T T T T
0 5000 10000 15000 20000 25000 30000
Evaluations

Fig. 3: The branch coverage in terms of the average number of fitness evaluations.

BONUS equal to 0. Further frp with DL is better than with | C' |. Contrary to our framework on
DCS-ET the frr with DL or | C' | slightly decreases the performance because the frr with BONUS
different from 0 favors higher-order schemata and these latter overlapped, but DCS-ET uses simple
crossover and mutation operators that disrupt schemata. Thus, we answer RQ1 by claiming
that the evolutionary testing royal road function makes evolutionary testing more
effective and efficient if the schemata are preserved and their diversity is maintained.

To measure the advantage of each proposed component the framework DCS-ET is modified
step by step. First we replaced DCS-ET’s selection strategy by our pairwise selection, then we
changed the crossover operator to our adaptive one. After that we modified the mutation rate of
DCS-ET by making it adaptive. Finally we replaced the mutation way by our proposed one. Figure
3 summarizes different changing steps that we did to pass from DCS-ET to EGAF-ET.

For our benchmark set of simple programs, in Table 2 and Figure 3, our framework significantly
outperforms the DCS-ET framework both for branch coverage and number of fitness evaluations
required to cover a same number of branches. Also, each proposed operator alone performs better
than its simple counterpart. The pairwise selection could not show a significant enhancement in
terms of branch coverage, but it is distinctly better than the selection strategy used by DCS-ET
in terms of number of evaluations. The pairwise selection offers to the crossover operator a pair
of individuals that complement each other. According to the results the complementary between
the crossed individuals may diversify schemata and preserve them. Therefore, we answer RQ2
by claiming that the pairwise selection maintains the population diversity in terms of
schemata, thereby making evolutionary testing more efficient but not more effective.

The proposed adaptive crossover does not show a meaningful difference compared to the discrete
crossover because of the complicated relationship between schemata: the latter overlap and strongly
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depend on each other. The dependency between schemata preserves the combination of fitter genes
to generate fitter schemata, maybe due to the kind of UUTSs tried, which essentially use integer
data types and their branches are highly dependent on each other. More evidence is needed to draw
a general conclusion about the proposed crossover. Thus, on the selected UUTs and the proposed
crossover operator and we answer RQ3 by claiming that combining fitter genes does not
necessary generate fitter schemata.

In the adaptive mutation operator, both the adaptive mutation rate (probability) and the adap-
tive mutation strategy (value) significantly enhance the performance in terms of fitness evaluations
and branch coverage. The adaptive mutation rate orients the mutation operator on the “weaker”
genes by assigning them a high mutation rate, then allows it to outperform its counterpart that
uses equal probability regardless of gene performance. Thus, the adaptive mutation strategy orients
the mutation operator to choose potential values by using the minimum and the maximum branch
distances while favoring the neighborhood. This mutation strategy outperforms the breeder muta-
tion operator in terms of branch coverage and fitness evaluations. Therefore, we answer RQ4 by
claiming that incorporating structures and properties associated with weaker or bet-
ter performance to preserve schemata and mutate individuals significantly enhances
evolutionary testing.

4 Related Work

The last two decades have witnessed an increased interest concerning search-based test data genera-
tion, especially evolutionary testing. Many authors have considered genetic algorithms as potential
search algorithms for test data generation [2-7]. These approaches keep the general concept of
GA and focus only on two components: the representation of the feasible solutions and the fitness
function. This makes the GA operators problem independent and those approaches very general.
Our framework is different because in addition to these we propose to make GA operators problem
dependent by taking into consideration the structure of test-data problem (schemata, branches
and input variables performance) during the evolution phase.

Korel proposed a dynamic data flow analysis approach [20] for path coverage that may make
the GA evolution phase problem dependent. His approach consists of analysing the influences
of each input variable on the successful sub-path traversed during the program execution. Only
input variables that influence the successful sub-path are subject of changing their values. Korel’s
approach does not take into account the non-executed sub-path and input variables that statically
have an influence on the test target. However input variables that statically influence a test target
in the whole path (executed or non-executed sub-path) may contain the key to reach a test target.
Harman et al. [24] studied the impact of search space reduction on search based test data generation.
In their study for a given test data generation problem (branch) they use the static analysis
approach described in [25,26] to remove irrelevant input variables form the search space. This
approach ignores input variable value performance, So in a given context (individual) it cannot
distinguish between relevant and irrelevant input variables, i.e., a input variables may be relevant
for a given individual and irrelevant for another one ”blindly” changing its value may decrease
performances because it may be a component of a schema. Our approach is different from Korel
and Harman et al. because it is based on schema theory and combines static and dynamic analysis
to determine relevant and irrelevant input variables for each individual according to a test target.

An evolutionary testing schema theory has been previously defined and analysed by Harman
and McMinn [5]. They define an evolutionary testing schema as a set of chromosomes that satisfy
a constraint (branch) and its order is the number of variables involved (arity of the constraint).
According to the schema theory, this means that a schema defined on a small number of variables
(lower-order schema) is less fit than a schema defined on a larger number of variables (higher-order
schema), thus the recombination of chromosomes satisfying lower-order schema builds chromosomes
satisfying higher-order schema. Since they do not define a fitness function and there is none in the
literature that reflects their schema concept their definition is useful only on some particular cases
of branches and it is hard to be automated. As we claim earlier in this paper, it is more productive
to model schemata for a class of problems while linking it with a fitness function. Our evolutionary
testing schema definition is more general and it is reflected by a royal road function. In our definition
the order of schema is the number of individual conditions, so any nested branch is a potential
evolutionary testing problem wherein the schema theory may be applied.
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Despite the large body of work on evolutionary testing, we believe this is the first paper to
provide a complete evolutionary testing GA framework based on schema theory. Our framework
rational differs from previous work in that it provides a new concept of fitness function and all
fundamental GA operators.

5 Conclusion

In the last two decades, search-based testing and in particular evolutionary testing have been ex-
tensively applied to solve the problem of automated test data generation. However despite the
importance of the schema theory analysis for GA, its application to evolutionary testing has posed
many challenges. To establish a GA framework based on schema theory analysis, this paper pro-
vides a novel automated evolutionary testing framework. We have (1) adapted schema theory for
evolutionary testing, (2) defined a royal road fitness function for evolutionary testing, (3) proposed
a new selection strategy called pairwise selection that combines two selection strategies to maintain
the population diversity in terms of schemata, (4) proposed an adaptive crossover that dynami-
cally changes its rate according to the schemata, and (5) proposed an adaptive mutation operator
that dynamically changes its rate and the way it mutates in terms of the schemata and their
performances. We carried preliminary experiments to compare our framework to DaimlerChryster
system on some randomly generated benchmark programs. A preliminary case study was carried
out to frame the research questions. Results indicate that (1) the proposed royal road function
can make evolutionary testing more effective and efficient if the schemata are preserved and their
diversity is maintained; (2) the pairwise selection is able to maintain the population diversity in
terms of schemata, thereby making evolutionary testing more efficient but not more effective; (3)
the proposed adaptive crossover does not show a meaningful difference comparing to the discrete
crossover, thereby combining fitter genes does not necessary generate fitter schemata; (4) incorpo-
rating structures and properties associated with weaker or better performance to preserve schemata
and mutate individuals can significantly enhance evolutionary testing. Further the results obtained
are promising but experiments with real world programs must be performed to provide additional
empirical evidence on the potential of our proposed evolutionary testing framework. In the future
we will focus on integrating the proposed framework in our tool JTExpert [27].
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1 Introduction

The work partially described in this paper is at the crossroads of several research fields and specif-
ically deals with higher educational learning assessments and Constraint Satisfaction Problems.
The summative assessment [8,1,2] is done at the end of a curricula in order to evaluate learning
outcomes [3]. When this type of assessment aims at delivering a certificate or a diploma, it is called
certificative. Then a certificative assessment, which can be interpreted as a collection of tests, must
guarantee fairness between all learners. However, teachers might have to create differentiated as-
sessment Tests within various contexts : for distinct cohorts of learners, related to the same topics,
and in various university sections or from a session to another; for the same cohort with multisession
assessments; for a single assessment session with the aim to limit fraud (e.g. in a large amphithe-
ater). As a consequence, the question is then : How to guarantee fairness of a given assessment if
we suppose it consists of distinct Tests ? 3 Thus, we tackle in this paper the problem of assisting,
thanks to an automatic process, the teacher in designing and generating assessments where each
Test is structurally different from another. This work proposes a structural metric with the aim
of characterizing the distance between two given Tests. This metric provides a dedicated fitness
function that leads to define a genetic algorithm (GA) technique. We especially focus on Multiple
Choice Questionnaires automatic generation. As a requirement, we suppose that the teacher has
at his disposal a set of questions where each of them is coupled to a set of possible choices of
answer (named source database in the following). The original use of GA allows to optimize this
structural differentiation and thus guarantees the generation of collections of Tests with the largest
distance possible while involving the smallest source database. The section 2 presents the structural
distance between two Tests and defines its associated metric. The section 3 provides comparative
experimental results about automatic generation of assessments using a genetic approach. Finally,
section 4 gives some preliminary conclusions about this work and presents prospects.

2 About the structural distance : DTEST

A Test consists of an ordered sequence of Item Tests from the source database. Each ItemTest con-
sists of one Enonceltem, the question statement, and an associated unordered set of Repltems from
which possible choices will be extract during the generation process*. Each choice is semantically
associated to a true or (exclusively) a false answer. If you associate each Enonceltem to a unique
identifier, a Test can be likened as a word built on an alphabet. Drawing of this, related works
on structural distance between words have been considered. As an example, Levenshtein proposed
to estimate the distance between two strings by calculating the number of insertions, deletions
and substitutions of characters that must be achieved in one of them to make it identical to the
other [6,5,9].

2.1 From Levenshtein to structural distance between Tests

Practically DTEST is a score within the range [0, 1] and represents the distance metric between a
couple of Tests (t1,t2). From this range, 0 corresponds to t; = ¢2, meaning each Enonceltem from

3 The notion of distinction between two Tests is then considered from a structural angle and as a first
step, fairness of the assessments is out of the scope of this paper.
4 associated sets are denoted respectively Enonceltem, and RepItem? for a Test x and an ItemTest y
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t1 belongs to to at the same rank and is associated to the same set of Repltems with the same order.
On the other hand, 1 is the maximal distance and corresponds to t; # t2 meaning each Enonceltem
from ¢; does not belong to t;. Intermediate values represents a measure of 2 amounts applied to
the sets of Enonceltems and Repltems respectively Disparity and Permutation. More precisely,
Disparity measures the amount of distinct elements from two sets whereas Permutation expresses,
within the framework of ordered sets, the mean rank difference between identical elements. Thus,

_ pagsad
Disparity(a,b) = m“z%‘zzﬁ’i ##tgmb) and Permutation(a,b) = 2Lma£§$?])[mm(#a’#b)1 In both
’ 2 2

cases a and b are ordered sets and If denotes the rank of the element 7 in the set j. The figure 1
provides a schematic representation of the scale of our final metric which consists in combining 4
scores which are in order of relevance :

7’) cp(th t2) = V1'6(E'rmnce[tzm,tl NEnonceltemy.,) PeTmUtation(RepItemfl ) Repltemzl )
1) qp(t1,te) = Permutation(Enonceltems,, Enonceltems,)
7’“) Cd(tl ’ t2) = \vlre(Enonce[temt1 NEnonceltemy.,) Disparity(RepItema ’ Repltemfl )
) qd(t1,t2) = Disparity(Enonceltemy, , Enonceltemy,)

Thanks to this metric, we then are able to propose in the next section, thanks to a GA [7,4],
an original technique that generates collection of Tests with global distance (i.e. average distance
of each Test couple) greater than randomization.

0 ap
e ~\ ~\
Y Y
Low High |
permutation permutation 1
in in High i High
Enonceltems Enonceltems disparity in H disparity in
and Low and Low Repltems : Enonceltems
disparity in disparity in :
Repltems, Repltems, i
E
Low Distance High Distance

e: Fixed Boundary O: Floating Boundary

Fig. 1. Scale of the metric characterizing the distance between two Tests

3 Generating thanks to a genetic approach

The aim of our preliminar experimentation is to offer the highest structural distance as possible
while allowing the teacher to imagine the smallest possible number of elements in the source
database. To do so, our GA approach uses DTEST as a fitness function and is named GAwDTEST.
Within the experimental context, we choose to work with a population of 1,000 individuals where
each of them is initially a collection of Tests randomly sampled among those belonging to the
source database. Following preliminary experimentations that we cannot detail in this paper, we
empirically set the percentage of deletion and mutation to 8% and 3% respectively. We consider
1,000 generations or a timeout at 3,600 seconds. Some prior experiments lead us to consider the
ratio %1 tem;etsetmeT eSS T eLs) Z_t“base as the relevant parameter correlated to the context of generation.
In other words and as an illustration, this means that generating Tests with 10 (resp. 50) Item Tests
chosen among a set of 20 (resp. 100) are identical contexts. When the ratio is high, this corresponds
to a context where the teacher has a large amount of questions at his disposal so that building
his assessment. Prior experiments show that in this case, a random selection results good enough
structural distance according to DTEST. On the other hand, when the ratio is closed to 1.00,
random generation is not sufficient to provide a great as differentiation between the generated
Tests as the size of the collection grows®. Consequently, we choose to focus only on small ratios
{1, 1.2, 1.5, 1.7, 2}. Figure 2 gives some details on the experimental contribution of GAwDTEST
in comparison with random selection. Left side of the figure 2 shows comparative mean distances

5 note: ratio equals 1.00 is only a shuffle on the source database
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between random selection and GAwDTEST according to DTEST. For instance this guarantees to
the teacher that if he has at disposal n question in the database to build Tests of n questions
(i.e. ratio = 1.00), GAwDTEST enhances the classical random shuffle generation, according to the
global metric DTEST, by 10%. Right side of figure 2 provides the distribution of DTEST metric for
each couple of Tests belonging to a given assessment at a ratio 1.00. According to our scale (see

figure 1), and wit"
in Enonceltems v

> a high disparity

Fig. 2. Comparative results between a random sample and selected collection from GAwDTEST for ratios
from 1.00 to 2.00

4 Conclusion

This paper has presented an original approach that can assist the teacher in automatically gener-
ating collections of Tests through MCQ, specifically within the context of certificative assessments.
As a contribution, we propose an original metric partially inspired from Levenshtein distance[6,
9] that characterizes the difference between two Tests of a given collection. Since this metric can
be used as a fitness function, we adapted a genetic approach to automatically generate collections
that maximizes the distance between each couple of Tests of a given collection and that even if the
teacher has few patterns in its source database. This approach, GAwDTEST, can be compared to
a random selection and allows some substantial improvements on a difficult problem. GAwDTEST
improvements are more significant to generate small collections. Analysis of such a fact cannot be
developed within this paper. Nevertheless this leads us to consider a new parameter (i.e. constraint)
during generation process : Topology of the classroom. Limiting fraud within this context consists
in considering that each learner must have a (very) distant Test from his entire neighborhood. This
problem can be partially understood as an allocation problem. One of our future work, in addition
to handling fairness, will consider this new constraint.
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1 Introduction

Model Driven Engineering (MDE) provides tools for systematization and automation of models.
Model transformations are nowadays widely used either in a maintenance context or in a more tra-
ditional development contexts. It allows realization at many stages during life cycle for a software:
code generation, reverse engineering, etc. These models transformations are for example a way to
change a model from a specific domain — e.g. a UML class model — to another domain — e.g. a
Java model. Domains of models are specified by models of higher abstraction level: Meta-Models

Generation of models from MM as a testing purpose is a quite complex task. Several combi-
natorial approaches have already been proposed. In [1-3], the authors propose a generation based
on Constraint Satisfaction Problems (CSP). These methods provide encouraging results, creating
models that conform to meta-models and moreover, encoding constraints (OCL) that can be added
to meta-models. Recently, in [4], simulated annealing generate a set of models which are the more
dissimilar and which cover the meta-model. Meta-heuristics seem to provide interesting results in
term of diversity, and, in our opinion, diversity is now a major issue to complete our generation
process.

In this paper, we explain how to generate diverse models conform to a meta-model, using genetic
algorithms.

2 Evolutionary algorithm

Evolutionary algorithm (EA) have been largely adopted to provide good solutions to combinatorial
problems. In this section we will describe the differents components of our EA [5].

2.1 Chromosome representation

Representing models as a sequence in a chromosome is complex, moreover if we want to allow the
possibility to crossover models. We base our approach on the CSP paradigm used by the authors
in [1]. In this work, Ferdjoukh et al. propose to describe a model as a constraint network composed
by variables, domains associated to these variables and a set of constraints. A valid model (i.e.
which respect the meta-model and constraints) is an instantiation of variables that respect CSP
constraints. We first choose to use vectors of instanciated values as chromosome representation. In a
second time, we prefer to express in a chromosome a set of models (a list of size p) by concatenating
p consecutive vectors representing p different models.

2.2 Initial Population

In [6], Ferdjoukh et al. introduce probabilistic simulation to generate realistic datas from a MM,
based on a CSP instantiation. Their tool (named Grimm) is able to generate a set of valid models,
conforms to meta-models, with variety in domain range instantiation due to probability distribu-
tion. A first set of 100 models, conforms to a specific meta model, is generated. Due to the value
of p, we respectively considered 50 chromosomes (p=2), 25 chromosomes (p=4) or 20 (p=5).
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2.3 Fitness function

Diversity between models is a rich problem. Indeed, it could be linked to a metrix representing
similarity /dissimilarity. Some previous works in model driven engineering [7] used semantics data of
models to provide a similarity measure. In our case, semantics data seems not sufficiently realistic,
models are generated. Instead, we choose to focus on structure to define fitness.

As previously explained we reduced the problem by representing a graph as a vector includ-
ing for each artefact target, relations and attributes. A simple Hamming distance or Levenshtein
distance can be then used to compared two models. We choose to used a more recent metric from
Data Mining domain: the cosine dissimilarity [8]. This metric is usualy applied to vectors that
represent occurences of word in a text. It is defined as:

De(V1,V3) =1 Sc(Vr, V%) (1)

with Sc(ﬁ, 72) the cosine similarity of two vectors 71 and 72 defined as :

R ¥ 10\
VIl VLIPS P
For the simple case where one chromosome contain two models, this distance is quite easy to

compute, but in other cases, we obtain a distance matrix. We follow different approaches to try to
increase diversity. Indeed, we consider several fitness for the "more than two models” case:

(2)

c(V1,V32) :”

(1) afitness based on the lowest value of the distance matrix: with this approach, we consider that
increase the minimal value will normally increase all the distances;

(2) a fitness based on mean value of the distance matrix: with this approach, we hope that trying
to increase the mean will increase all the distances;

(3) a fitness based on a sum of (1) and (2), trying to increase both values;

(4) two different fitness functions: the (1) and the (2), trying to increase one of the two values.

If the three first approaches can be realized with all genetics algorithms, the last approach need
the use of a multi-objective evolutionary algorithm. We choose the widely used NSGA-II [9,10].

2.4 Crossover, mutation, feasibility repair and selection

We randomly pick couples of chromosomes and apply a simple one point crossover on them to
generate new chromosomes.

crossover

IE
2
EI

Fig. 1. One point Crossover between two chromosomes composed by 2 models.

We determine that a mutation chance of 0.5%0 for each gene is enough to avoid a too quick
convergence and allow diversification. To check feasibility, first we store extra-data, like domains
and constraints, to quickly check if new vectors (generated by crossover or mutation) are still valid.
Our modified vector is reintroduced in CSP tool to check satisfiability and if necessary, repair it
by looking valid instantiation in a classical depth first search exploration.

As selection criterion, when we generating 100 new chromosomes, we keep the 100 best over
the overall 200 chromosomes

3 Computational results

We first consider a population with individual composed only by 2 models. In Fig. 2, we can observe
that our method provides better results than the CSP approach. Indeed, population at generation
100 has a mean distance score better than the original population. Moreover, we can note that for
both distances the lowest value of our final population is better than the higher value of initial
one. The lowest values for cosine distance are inherent to the fact that some values of vectors are
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Fig. 2. Evolution of mean distance for population with chromosome with 2 models

too constrained — the dashed line indicates the best possible pairing at last generation, computed
with a brute force algorithm.

Fig. 3 shows the different fitness approaches when p = 5. Trying min value (1) or mean value (2)
brings quite similar results. The combination of two objectives, with sum aggregation (3) and even
more with bi-objective vision (4), provides even better results. We also observe that our method
provides better results than original one at the cost of an increased computation time to reach
convergence.
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Fig. 3. Evolution of mean distance for population with chromosome composed by 5 models
4 Conclusion

Diversity of artefacts in model generation is an important point. The evolutionary meta-heuristic
provide a tool to increase distance between models. With this approach, we are able to increase
mean score for more than 50% for considered metrics. As perspectives, we will look at the case where
chromosome are mono-model by considering a population fitness, and preliminaries computations
seem to provide better results in terms of scalability.
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Abstract. TESTAR is an open source tool for automated software testing that generates
test sequences on the fly based only on information derived from the Graphical User Interface
(GUI). At the core of TESTAR is the way to automatically select which actions to test;
finding the right algorithm to carry out this task can make significant differences to the
testing outcome.

In this work we evaluate Q-learning as a metaheuristic for action selection and carry out
experiments with a range of paramenters, using random selection as a baseline for the com-
parison. Two applications are used as Software Undder Test (SUT) in the experiments,
namely MS Powerpoint (a proprietary desktop application) and the Odoo enterprise man-
agement system (an open source web-based application). We introduce metrics to evaluate
the performance of the testing with TESTAR, which are valid even under the assumption
that access to the source code is not available and testing is only possible via the GUI.
These metrics are used to perform statistical analysis, showing that the superiority of action
selection by Q-learning can only be achieved through an adequate choice of parameters.

Mots-Clefs. Automated GUI Testing, Testing Metrics, Testing Web Applica-
tions, O-learning

1 Introduction

The Graphical User Interface (GUI) represents a central point in any application from where the
user may access all the functionality. Hence, testing at the GUI level means taking the user’s per-
spective and is thus the ultimate way of verifying a program’ s correct behaviour. Current GUIs
can account for 45-60% of the entire source code [2] in any application and are often large and
complex. Consequently, it is difficult to test applications thoroughly through their GUI, especially
because GUIs are designed to be operated by humans, not machines. Moreover, they are inher-
ently non-static interfaces, subject to constant change caused by functionality updates, usability
enhancements, changing requirements or altered contexts. Automating the GUI testing process is
therefore a crucial task in order to minimise time-consuming and tedious manual testing.

TESTAR is an open source tool that performs automated testing via the GUI, using the op-
erating system’s Accessibility API to recognise GUI controls and their properties, and enabling
programmatic interaction with them. It derives sets of possible actions for each state the GUI is
in and selects and executes appropriate ones, thus creating a test sequence on the fly. TESTAR
has been successfully applied to various commercial and open source applications, both deskptop
and web-based ones, as shown in e.g. [4,6,9, 10]; in most cases the action selection mechanism was
random choice, a procedure also known as monkey testing

In citeBV2012,BV14 the first attempts to action selection in TESTAR based on metaheuristics,
and especifically Q-learning, are described. However, the performance metrics used for evaluation
were the average time it took to crash the application under test and the reproducibility of the
crashes. Although the results were promising, they revealed problems with this choice of metrics,
which we try to address here. In this work we introduce four novel metrics specifically designed to
testing via the GUI and without access to the source code of the applications. Using these metrics
we compare various settings for O-learning and also use random testing as a baseline.
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In order to carry out our study we chose two applications: the Odoo enterprise resource planning
(ERP) system and the PowerPoint presentation software. They are two very different types of SUT:
one is an open source web application and the other a proprietary desktop application.

We run experiments in three phases or iterations, refining the process after each phase, and
carry out statistical analysis on the results of the third phase.

The rest of this paper is structured as follows. Section 3 describes the action selection mecha-
nism using Q-learning. Section 4 introduces the metrics used for quality assessment of the testing
procedure. Section 5 summarises the experimental set up, the results obtained and the statistical
analysis carried out; it also highlights the problems encountered. Finally, in section 6 we present
some conclusions and outline areas for future work.

2 Related work

The existing literature in User Interface testing covers three approaches: capture-and-replay (C&R),
which involves recording user interactions and converting them into a script that can be replayed
repeatedly, visual-based which relies on image recognition techniques to visually interpret the im-
ages of the target UI [3] , and traversal-based, which uses information from the GUI (GUI reflection)
to traverse it [1], and can be used to check some general properties.

Current practice of Ul testing relies mainly on Capture-and-Replay (C&R, also called Record-
and-Replay) tools. This is a mature technology, for which tools are widely available, be they com-
mercial or open source. However, a major problem with this approach is maintenance, as changes
in the Ul usually render the created test scripts unusable. This problem becomes more severe with
the new generation of Internet-based applications, as these adapt their layout dynamically accord-
ing to the users’ needs. Hence, in spite of some degree of automation, GUI testing still involves
heavy load of manual work, which is costly and error prone [3].

Visual-based and traversal-based tools aim at solving the maintenance problem; the latter
group, to which TESTAR belongs, is considered to be the most resilient to changes in the SUT.

In order to evaluate the quality and performance of the testing suitable metrics must be defined.
For instance, in [7] Chaudhary et al propose metrics for event driven driven software. Memon et al
[8] propose a coverage criteria for GUI testing. However, knowing what to measure is still an area
that deserves further investigation. In this work we propose four such metrics which are suitable to
measure the quality of the GUI testing on web applications, based on the assumption that source
code is not available.

3 Using Q-learning for action selection in TESTAR

The choice of an action selection mechanism is one of the two main inputs for the human tester in
TESTAR (the other one being the custom protocol).

We have employed the Q-learning algorithm to guide the action selection process. Q-learning
[11] is a model-free reinforcement learning technique in which an agent, at a state s, must choose
one among a set of actions A, available at that state. By performing an action a € A, the agent
can move from state to state. Executing an action in a specific state provides the agent with a
reward (a numerical score which measures the utility of executing a given action in a given state).
The goal of the agent is to maximise its total reward, since it allows the algorithm to look ahead
when choosing actions to execute. It does this by learning which action is optimal for each state.
The action that is optimal for each state is the action that has the highest long-term reward.

Our version of the Q-learning algorithm, shown in Algorithm 1 is governed by two parameters:
the maximum reward, R,,., and the discount +. Depending on how these are chosen the algorithm
will promote exploration or exploitation of the search space. The R,,,, parameter determines
the initial reward unexplored actions have; so, a high value biases the search towards executing
unexplored actions. On the other hand, discount -y establishes how the reward of an action decreases
after being executed. Small v values decrease the reward faster and vice versa.

R is set as follows:

R if x,=0
N max a
R(s,a,s') = {1 otherwise

Ta
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Algorithm 1 Q-learning algorithm

Require: Rz >0 /* reward for unezecuted actions */
Require: 0 <y <1 /* discount factor */

1: begin

2 start SUT

3 V(s,a)  Rmaz V(s,a) € S x A

4 repeat

5: obtain current state s and available actions Ag
6 a* « argmaz.{V(s,a)|la € As}

7 execute a”

8: obtain state s’ and available actions A,

9: V(s,a” < R(s,a",s") + v -mazaeca,, V(s a)
10: until stopping criteria met

11: stop SUT

12: end

where z, is the number of times action a has been executed and R, is a large positive number
(in order to make actions not executed before attractive for the agent)

4 Testing performance metrics

Finding appropriate metrics for assessing the quality of the testing has been a long standing issue.
For instance, [8] defines a number of metrics for GUI testing, but these imply having access to the
code of the SUT; one of the strengths of TESTAR is precisely not relying on the assumption that
this is the case. However, this also implies that specific metrics must be defined.

In previous work [5] we used the number of crashes and the time to crash as a measure of
the testing performance, but these pose problems too, because they reveal nothing about to what
extent the SUT was explored, a fact particularly relevant if no crashes are detected. Aiming to
circumvent that issue, in this work the metrics were chosen as follows:

— Abstract states This metric refers to the number of different states, or windows in the GUI,
that are visited in the course of an execution.

— Longest path Any automated testing tool must ensure the deepest parts of the GUI are tested.
To measure whether the tool has just stayed on the surface or it has reached deeper, we define
the longest path as the longest sequence of non-repeated (i.e. excluding loops) consecutive
states visited.

— Minimum and maximum coverage per state We define the state coverage as the rate of
executed over total available actions in a given state/window; the metrics are the highest and
lowest such values across all windows. This allows us to know to what extent actions pertaining
to states were explored.

A consequence of not having access to the source code is that the metrics given above can be
used to compare the efficiency of different testing methods, but not to assess the overall goodness
of a method in isolation, because we do not know the global optima for each metric; for instance,
we cannot know exactly how many different states there are.

5 Experiments and results

5.1 The software under test (SUT)

We used two different applications in order to evaluate our Q-learning approach in TESTAR, Odoo
and PowerPoint.

Odoo ! is an open source Enterprise Resource Planning software consisting of several enterprise
management applications that can be installed or not depending on the user needs. It can be

! See https://github.com/odoo/odoo for Odoo’s git repository and issue tracker, including a manual with
instructions on how to deploy the server and its requirements.
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used to create websites, manage human resource (HR), finance, sales, projects and others. Odoo
has a client-server architecture and uses a PostgreSQL database as a management system. Once
deployed, we installed the mail, calendar, contacts, sales, inventory and project applications in
order to test a wide number of options.

PowerPoint Microsoft PowerPoint is a slide show presentation program currently developed by
Microsoft and part of its productivity software Microsoft Office. It is currently one of the most
commonly used presentation programs available.

5.2 Procedure

In order to test Odoo with TESTAR a server version of Odoo must first be deployed?. Then
TESTAR must be configured by supplying the URL that accesses the Odoo client and the browser
that will be used to launch it.

On the other hand, to test PowerPoint with TESTAR we must first install it and then TESTAR
must be configured by providing the specific command that would be used to run PowerPoint using
the cmd (Windows command prompt).

Next, for both tools we run TESTAR in spy mode; this uncovers possible problems with items
that may not be detected well, such as emergent windows. In addition, it helps detecting undesired
actions that might be performed by TESTAR that may bring problems such as involuntary file
deletion. A number of parameters must also be set up, which are given in Table 1. With these
settings and a first version of the TESTAR protocol® we carried out three iterations of the testing
process, improving the protocol each time so as to remove the problems encountered.

Table 1. Experimental set up. We carried out three iterations involving the five sets. After each iteration
the results obtained were used to refine the TESTAR protocol so as to better adapt it to the application.

Set Max. actions per run Runs  Action Selection Algorithm Parameters

Rmaz v
Q1 1000 30 Q-learning 1 0.20
Q20 1000 30 O-learning 20 0.20
Q99 1000 30 Q-learning 99 0.50
Q10M 1000 30 Q-learning 9999999 0.95
RND 1000 30 random N/A N/A

5.3 Statistical analysis

We run the Kruskal-Wallis non parametric test, with a = 0.05, on the results for the five sets. In
iteration 3 the test shows that all the metrics have significant differences among the sets. Running
pair-wise comparisons provides the results shown in the boxplots contained in Figures 1 and 2;
these results are ordered in Table 2, where the shaded column is the best option. It can be seen
that for each SUT and metric the best choices are different; also, random selection turns out not
to be such a bad choice in most cases. This highlights the importance of an adequate choice of
parameters when using Q-learning for action selection.

One metric we have not considered in the statistical analysis is the number of failures encoun-
tered, shown in Table 3

In the case of Odoo we can see that although Q20 did not perform so well in the other metrics,
it does on the other hand find the higher number of failures (which involve stopping the execution
and hence having a lesser chance of increasing the value of other metrics); this must also be taken
into account when evaluating the different algorithms. However, for PowerPoint no failures were
encountered, so this metric reveals no information.

2 See the source install tutorial available from
https://www.odoo.com/documentation/8.0/setup/install.html
3 For more details the reader is referred to the tutorial available from www.testar.org
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Table 2. Results of the statistical comparison for the sets obtained in the third iteration. The shaded
column represents the best choice, the remaining ones are in order of preference.

Metric (Odoo) Set

Abstract states = Q10M RND Q1 Q99 Q20

Longest path = Q10M Q99 RND Q1 Q20

Maximum coverage per state = Q10M Q20 RND Q1 Q99
Minimum coverage per state Q99 Q20 QI0M Q1 RND

Metric (PowerPoint) Set

Abstract states Q99 Q20 RND Q10M Q1

Longest path Q20 Q99 RND Q10M Q1

Maximum coverage per state =~ Q10M Q20 Q99 RND Q1
Minimum coverage per state Q1 Q20 Q10M Q99 RND

Abstract states Longest path

size

abstract states

OFESST 1T

RND a1 Q20 Q9 Qtom RND a1 Q20 Qg Qtom
algorithm algorithm
Maximum coverage per state Minimum coverage per state

%

]

. 000~

RND a1 Q20 Qg9 atom RND a1 Q20 Q99 a1om
algorithm algorithm

Fig. 1. Boxplots for the four metrics with the results obtained for Odoo in Iteration 3.

Table 3. Number of failures encountered per algorithm in the 3rd iteration when testing Odoo. No failures
were encountered in PowerPoint.

Set (Odoo) Total Failures Unique failures

Q10M 3 1
Q99 0 0
Q20 6 2

Q1 2 1
RND 1 1
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Abstract states Longest path

300~
200~
150~
@ 200~
o .
=
I @
= & s
& 100- o p 4
@
100~
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I I
0- 0-
RND a1 20 Q99 atom RND a1 Q20 ase atom
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Maximum coverage per state Minimum coverage per state
1.00- . .
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075- 0.020-
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0.010- ‘ .
0.25-
0005 |—_L|
0.00-
RND a1 Q20 Q99 Qtom RND at Q20 Q99 Qi0m
algorithm algorithm

Fig. 2. Boxplots for the four metrics with the results obtained for PowerPoint in Iteration 3.

179 sciencesconf.org:meta2016:112654



6 Conclusions

We have shown here the successful application of a Q-learning action selection strategy within the
TESTAR tool to the automated testing of the Odoo management software and the commercial
application PowerPoint. Q-learning was also compared to monkey testing, i.e. using random choice
for action selection. Four metrics were defined in order to evaluate the performance. Statistical
analysis reveals the superiority of the Q-learning-based method, provided the parameters of the
algorithm have been properly selected.

Further work will involve the improvement of the metrics. We will also explore more complex
metaheuristics for action selection, especially population based ones (such as ant colony optimisa-
tion and genetic programming) in order to improve over the relatively simple Q-learning algorithm.
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ABSTRACT

In this paper, we present a genetic algorithm for the open
shop scheduling problem. We use a simple and efficient
chromosome representation based on the job's occurrence
and the fitness function reflect the length of the schedule.
The solutions obtained after performing the different
operators of the genetic algorithm are always feasible.
Heuristic approaches are also developed to generate the
initial population and to improve the obtained solutions. The
algorithm was implemented and computational results show
interesting result.

INTRODUCTION

The open shop scheduling problem consists in sequencing a
setJ of n jobs on a seM of m machines to minimize the
length of the schedule (the makespan). A job is a set of
operations to be processed on the associated machines
without interruption in an arbitrary order (the order of these
operations is a decision variable for every job).

The open shop is NP-hard. In (Gonzalez and Sahni 1976) the
open shop on three machines O3||Cmax is shown to be binary
NP-hard. However, O2||Cmax, the open shop on two
machines, is polynomially solvable in @)(The open shop

can be formulated by a disjunctive graph. Contrarily to the
job shop where the order of operations is fixed, in the open
shop all arcs of such a graph are disjunctive, and we have to
select the direction of all arcs of the graph. This case implies
that the open shop has more decision variables and larger
solution space. A complete acyclic selection represents a
feasible schedule and its length is the value of the longest
path in the graphRoy and Sussmann 1964)

Only few exact methods are proposed for the general open
shop problem, a branch and bound procedure using the
disjunctive graph formulation is developed by Brucker et al
1997. Their algorithm is based on the branching scheme of
Brucker et al (Brucker et al 1994) and the immediate
selection of Carlier and Pinson (Carlier and Pinson 1989)
both applied to the job shop problem. This algorithm was
improved by using intelligent backtracking (Guéret et al
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1998) and according to constraint propagation to reduc
search space (Dorndorf et al 2001).

Due to the limitations of exact methods in term
computation time, various heuristics and meta-heuri
were proposed to the open shop problem and many of
are an adaptation from the job shop problem. Guéret
Prins (Guéret and Prins 1998) have examined the
scheduling heuristics and proposed two new heuristics |
on list scheduling with priorities and matching construc
algorithm. The shifting bottleneck procedure was genera
to the open shop (Ramudhin and Marier 1996), init
developed for the job shop problem. Two construc
heuristics were presented (Brazel et al 1993): maic
algorithm based on the generation of Rank-Mini
schedules and insertion algorithm initially developed for
job shop (Werner and Winkler 1995). In (Liaw 1998) .
(Liaw 1999) an iterative approach was proposed base
Benders decomposition and a tabu search. A tabu see
also considered by Taillard (Taillard 1993). A gen
algorithm was proposed to the open shop (Liaw 2000)
(Prins 2000). Recently, an ant colony algorithm with b
search was proposed (Blum2005), a particular sv
optimization is discussed (Sha and Hsu 2008) and ¢
colony algorithm is developed (Huang and Lin 2011).
particle swarm of Sha and Hsu gives better results
difficult instances.

In this paper, we describe the basic definition of genetic
algorithm in Section 2. In Section 3, we propose a geneti
algorithm for the open shop. In Section 4, we discuss the
computational results given by the genetic algorithm. Anc
finally we conclude the paper by giving some perspective
Section 5.

BASIC DEFINITIONS

In this section, we describe the principle of the gel
algorithm proposed to solve the open-shop sched
problem.

Genetic Algorithm
The genetic algorithm (GA) is a generic search strategy

based on the natural selection and mutation of ne
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evolution. GA was introduced to optimization by several
researchers and became practical after the publication of the
book of Holland (Holland 1975). The GA is a very simple
process and it is used without knowing the characteristics or
the mathematical formulation of the optimization problem.

To elaborate a genetic algorithm, we need an initial
population. Each individual in the population is encoded by a
chromosome, which represents, in the best case, a unique
coding representation. The initial population is obtained
generally by heuristics and random process. Each individual
is evaluated by a fitness function; this function is related to
the considered objective to be optimized

As a natural evolution, the GA is composed of some
operators.The first operator is the natural selection: some
individuals are chosen among the best ones, to become
parents for individuals of the next generation On the
selected individuals a mutation operator is applied. It consists
on the permutation of chromosome elements. Another
important operator is the crossover. This operator is used to
obtain new individuals by recombination of the old ones. The
new individuals, called children, will be added to the
population by replacing the parents or the worst individuals
in the population and if we want to keep a fixed number of
individuals. The new children can also be added to the
population without deleting the parents and the number of
individuals grows for each generation.

The process is repeated until the stopping criterion is
satisfied. The stopping criterion can be either the number of
iterations, a time criterion or the gap between a certain lower
bound and the GA solution.

Genetic Algorithm for Scheduling Problem

The genetic algorithm was applied to a wide range of
scheduling problems. The chromosome represents generally
the order of jobs on machines. The crossover operator is
more complicated to implement due to the infeasibility of
solutions resulted from GA operators since the job apparition
in the sequence could be repeated. We need to rearrange the
chromosome to obtain a feasible solution.

The following example describes a chromosome of the single
machine problem and different operators of the genetic
algorithm, such as the mutation and crossover.

As seen above, a chromosome is given by an order of jobs in
the machine.

| Chromosome | 2 [ 5] 4] 1] 9] 7] §

CHE

Figures 1: Chromosome Representation

To perform the mutation operator, in our algorithm, we
choose randomly two points in the chromosome and we swap
the two associated jobs. Another way to get a mutated child
is to choose randomly three points in the sequence and swap
the associated jobs in circular permutation. The two figures
below illustrate these mutations:
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Parent 2|5/4]11]9| 7| 8/6]3
Child 2|5/6]1]9| 7] 84]3
Figures 2: Simple Mutation Operator
Parent 2|5/411]9|/7|8|6]3
Child 2|/5/6]1]9/4/8|7]3

Figures 3: Multi-points Mutation Operator

Given two parents, the crossover operator is applied as
follows: we choose randomly a point in the chromosome and
we copy the first part of the first parent in the first child. We
complete the remaining positions in the sequence with the
missing jobs following the apparition order in the second
parent. This ensures that the obtained children represent
feasible solutions. We apply the same process for the second
child. The following figure illustrates the process.

Parent 1 2151411 91 7 8 § 3
Parent 2 1171619 2 3] 5 § 4
Child 1 2151411 70 6/ 9 3 8§
Child 2 117161 9] 2] 5 4 § 3

Figures 4: Crossover Operator

GENETIC ALGORITHM FOR THE OPEN SHOP
PROBLEM

A population is an array containing several indivigu&ach
individual represents a solution of the open shop problem.
The individuals are evaluated by a fitness function according
to the objective function. At each step of the algorithm, some
individuals are selected to reproduce new members by the
crossover and mutation operators.

Solution Representation

A solution of the open shop is defined by ordering th
operations on each machine and by fixing an order of
operations. In the disjunctive graph representation, a feasible
schedule is a complete acyclic selection obtained by an
orientation of the disjunctive arc. The makespan equals to the
longest path in the oriented graph. A feasible schedule is also
an assignment of starting time for all operations. A solution
can be represented by different ways. An example of 3x3
machines- jobs with processing times given in Table 1 will
illustrate these different ways:

Table 1: Processing Time

Job

1 |2 |3
© 1 4 5] 8
£
= 2 2 | 9 9
&
= 3 417 2
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Sarting Time Representation.

The first way is obtained by takimgx m integer value array
which represents the starting timeg) (of operations. The
operations are ordered job by job; we put in the finst
position the operations of the first job and so on.

[ 12| 3| 4| 5| 6] 7| 8 9
Vi 0 18] 25| 25 9| 1§ 9 (g 1B
M 1 /2| 3| 1| 2| 3| 1| 2 3
Job 1 2 3

Figure 5: Starting Time Representation

Jobs Sequence Representation.

The second representation is defined by the sequence of jobs
in the machine and operations in the job, called the job
sequence. It consists of two 2-dimensional arrays: the first
array contains the job sequence on each machine, and the
second defines the precedence order of operations.

Precedence Order
d N %

M; 1 2 3
M, 2 3 1
Ms 3 1 2

Job Sequence
i ) 5
M, 1 3 2
M, 2 1 3
Ms 3 2 1

Figure 6: Job Sequence Representation

Working Sequence Representation.

In the last representation, the solution is represgehyethe
working sequence with twa x m arrays. The first array
contains the job apparition called Inter-Job, and the second
array contains the precedence order called Intra-Job. The
Intra-Job defines the order of operations in the job, and the
inter-Job defines the order of jobs through the machines.

Following the job order in Intra-Job, the job occurrence in
Inter-Job defines the apparition order of its operations and
the sequence in the machines is constructed. Each job
appears m times (number of job operations).

Op 1-3|1-1| 1-2| 23| 2-2 3-2 21

Inter | 3 1 2 3 2 2 1 1 3

Intra | 1 2 3 2 3 1 3 1 2

Figure 7: Working Sequence Representation

From each representation, we can find the others by
constructing the schedule using the Gant Chart. The working
sequence is obtained by ordering the starting time in non-
decreasing order and we put the operations in the Inter-Job
following this order and respecting the Intra-Job giving by
job operations order.

Chromosome Representation and Fitness Function
In our genetic algorithm we use the working sequence

representation. The chromosome is represented by two
integer arrays. The first array is the Inter-Job and contains
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the job number, and the second is the Intra-Job and contains
the machine number. Each solution has a unique coding
representation and each chromosome corresponds to one
solution.

Inter-Job 3112 1| 2| 2/ 1 3
Intra-Job 31211 2] 3| 1 3 2

[d%)

Figure 8: Chromosome

The fitness function is the value of the makespan; the length
of the schedule. Given a solution represented by its
chromosome, we process as follows to compute the length of
the schedule: we read the first operation and we set the
associated job length and the loading machine with its
processing time. We read the remaining operations, and at
each position we update the associated job length and
loading machine with the possible starting time added to the
related processing time. When all operations are completed,
the length of the schedule equal to the maximum of loading
machine and job length.

Initial Population and H